Field trials under rain-fed conditions at the International Center for Tropical Agriculture (CIAT) in Colombia were conducted to study the comparative leaf photosynthesis, growth, yield, and nutrient use efficiency in two groups of cassava cultivars representing tall (large leaf canopy and shoot biomass) and short (small leaf canopy and shoot biomass) plant types. Using the standard plant density (10,000 plants ha-1), tall cultivars produced higher shoot biomass, larger seasonal leaf area indices (LAIs) and greater final storage root yields than the short cultivars. At six months after planting, yields were similar in both plant types with the short ones tending to form and fill storage roots at a much earlier time in their growth stage. Root yield, shoot and total biomass in all cultivars were significantly correlated with seasonal average LAI. Short cultivars maintained lower than optimal LAI for yield. Seasonal PN, across cultivars, was 12% greater in short types, with maximum values obtained in Brazilian genotypes. This difference in PN was attributed to nonstomatal factors (i.e., anatomical/biochemical mesophyll characteristics). Compared with tall cultivars, short ones had 14 to 24 % greater nutrient use efficiency (NUE) in terms of storage root production. The lesser NUE in tall plants was attributed mainly to more total nutrient uptake than in short cultivars. It was concluded that short-stemmed cultivars are superior in producing dry matter in their storage roots per unit nutrient absorbed, making them advantageous for soil fertility conservation while their yields approach those in tall types. It was recommended that breeding programs should focus on selection for more efficient short- to medium-stemmed genotypes since resource-limited cassava farmers rarely apply agrochemicals nor recycle residual parts of the crop back to the soil. Such improved short types were expected to surpass tall types in yields when grown at higher than standard plant population densities (>10,000 plants ha-1) in order to maximize irradiance interception. Below a certain population density (<10,000 plants ha-1), tall cultivars should be planted. Findings were discussed in relation to cultivation and cropping systems strategies for water and nutrient conservation and use efficiencies under stressful environments as well as under predicted water deficits in the tropics caused by trends in global climate change. Cassava is expected to play a major role in food and biofuel production due to its high photosynthetic capacity and its ability to conserve water as compared to major cereal grain crops. The interdisciplinary/interinstitutions research reported here, including, an associated release of a drought-tolerant, short-stem cultivar that was eagerly accepted by cassava farmers, reflects well on the productivity of the CIAT international research in Cali, Colombia., and M. A. El-Sharkawy, S. M. de Tafur
Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis in the field conditions under both ambient and higher temperature. Six diverse cotton cultivars were grown in the field at Stoneville, MS under both an ambient and a high temperature regime during the 2006-2008 growing seasons. Mid-season leaf net photosynthetic rates (PN) and dark-adapted chlorophyll fluorescence variable to maximal ratios (Fv/Fm) were determined on two leaves per plot. Temperature regimes did not have a significant effect on either PN or Fv/Fm. In 2006, however, there was a significant cultivar × temperature interaction for PN caused by PeeDee 3 having a lower PN under the high temperature regime. Other cultivars' PN were not affected by temperature. FM 800BR cultivar consistently had a higher PN across the years of the study. Despite demonstrating a higher leaf Fv/Fm, ST 5599BR exhibited a lower PN than the other cultivars. Although genetic variability was detected in photosynthesis and heat tolerance, the differences found were probably too small and inconsistent to be useful for a breeding program., W. T. Pettigrew., and Obsahuje bibliografii
Plants of Brassica juncea L. cv. T-59 were supplied with 50 or 100 µM nickel (Ni50, Ni100) at 10 d after sowing (DAS), and sprayed with 28-homobrassinolide (HBR) at 20 DAS. The plants treated with Ni alone exhibited reduced growth, net photosynthetic rate, content of chlorophyll, and the activities of nitrate reductase (E.C.1.6.6.1) and carbonic anhydrase (E.C. 4.2.1.1) at observed 40 DAS, whereas, the contents of peroxidase (PER), catalase (CAT), and proline were increased. However, the spray of HBR partially neutralized the toxic effect of Ni on most of the parameters. Moreover, the treatment of HBR in association with either of the Ni concentration boosted the contents of PER and CAT in leaves and that of proline both in leaves and roots. and M. Masidur Alam ... [et al.].
Walnut (Juglans regia L.) plantlets were incubated during micropropagation in standard vessels (quasi confmed vessels) or in aerated vessels flushed with 360 or 20 000 cm^(C02) under irradiances of 70 (LI) and 250 (HI) pmol m"^ s'*. Plantlet morphology was strongly affected by the environment; leaf surface was increased, but shoot elongation and number of stems were reduced after increasing the irradiance of culture. Gross photosynthesis (Pq) capacity measured by using the •®02 isotope and mass-spectrometry techniques was increased by increasing photosynthetic photon flux (PPF) and CO2 concentration. Plantlets exhibited a potential for photorespiratory activity and Mehler-type reaction and a high rate of mitochondrial respiration in all vessel types and irradiances. When a long-term HI was applied, gas exchange rates (Pq and O2 uptake) were reduced in most of the vessel and PPF conditions, except in quasi confmed vessels. Under all the growth conditions, net photosynthetic rate (P^) was zero or slightly positive and the dry matter accumulation was very similar. Changes in O2 exchange, growth rate or enzyme activities linked to carbon fixation that were induced by changes in PFD and CO2 concentration showed that the photosynthetic characteristics of plantlets were typical for hetero-mixotrophic tissues.
The present study aimed to determine effects of drought stress on Lycium ruthenicum Murr. seedlings. Our results showed that mild drought stress was beneficial to growth of L. ruthenicum seedlings. Their height, basal diameter, crown, leaf number, stem dry mass, leaf and root dry mass increased gradually when the soil water content declined from 34.7 to 21.2%. However, with further decrease of the soil water content, the growth of L. ruthenicum seedlings was limited. After 28 d of treatment, the seedlings were apparently vulnerable to drought stress, which resulted in significant leaf shedding and slow growth. However, growth was restored after rehydration. Drought treatments led to a decrease in contents of chlorophyll (Chl) a, b, and Chl (a+b) and increase in the Chl a/b ratio. After rewatering, the Chl content recovered to the content of the control plants. Under drought stress, minimal fluorescence and nonphotochemical quenching coefficient increased, thereby indicating that L. ruthenicum seedlings could protect PSII reaction centres from damage. Maximum fluorescence, maximum quantum yield, actual quantum yield of PSII photochemistry, and photochemical quenching decreased, which suggested that drought stress impacted the openness of PSII reaction centres. A comparison of these responses might help identify the drought tolerance mechanisms of L. ruthenicum. This could be the reference for the planting location and irrigation arrangements during the growing period of L. ruthenicum., Y.-Y. Guo, H.-Y. Yu, D.-S. Kong, F. Yan, Y.-J. Zhang., and Obsahuje bibliografii
Responses of baldcypress (Taxodium distichum) seedlings to soil moisture were studied to test the hypothesis that flooding may lead to seedling's higher susceptibility to drought. Treatments included a well-watered but drained control (C), continuously flooded (CF), control followed by drought (CD), and flooded followed by drought (FD). Gas exchange values revealed no significant effects on net photosynthetic rate (PN) in response to flooding. In contrast, after the onset of drought, PN was significantly reduced in CD and FD plants. Significant growth reductions under mild drought conditions indicated that baldcypress seedlings were drought sensitive. However, comparison of gas exchange rates and growth responses between CD and FD plants indicated that prior flooding had no detectable effect on subsequent sensitivity of baldcypress to drought. These findings explain baldcypress persistence in wetland habitats characterized by periodic flooding and mild drought. and J. M. Elcan, S. R. Pezeshki.
The study of leaf vascular systems is important in order to understand the fluid dynamics of water movement in leaves. Recent studies have shown how these systems can be involved in the performance of photosynthesis, which is linked to the density of the vascular network per unit of leaf area. The aim of the present study was to highlight the correlation between a leaf vein density (VD) and net photosynthetic rate (PN), which was undertaken using a digital camera, a stereoscopic microscope, and a light source. The proposed hypothesis was tested, for the first time, on the leaves of two cultivars of Vitis vinifera (L.). A significant difference was found between the VD of mature leaves of the two cultivars. VD was also significantly correlated with the maximum leaf PN. These findings support the hypothesis that the vascular system of grape leaves can be correlated with leaf photosynthesis performance., M. Pagano, P. Corona, P. Storchi., and Obsahuje bibliografii
Changes in growth parameters, carbon assimilation efficiency, and utilization of 14CO2 assimilate into alkaloids in plant parts were investigated at whole plant level by treatment of Catharanthus roseus with gibberellic acid (GA). Application of GA (1 000 g m-3) resulted in changes in leaf morphology, increase in stem elongation, leaf and internode length, plant height, and decrease in biomass content. Phenotypic changes were accompanied by decrease in contents of chlorophylls and in photosynthetic capacity. GA application resulted in higher % of total alkaloids accumulated in leaf, stem, and root. GA treatment produced negative phenotypic response in total biomass production but positive response in content of total alkaloids in leaf, stem, and roots. 14C assimilate partitioning revealed that 14C distribution in leaf, stem, and root of treated plants was higher than in untreated and variations were observed in contents of metabolites as sugars, amino acids, and organic acids. Capacity to utilize current fixed 14C derived assimilates for alkaloid production was high in leaves but low in roots of treated plants despite higher content of 14C metabolites such as sugars, amino acids, and organic acids. In spite of higher availability of metabolites, their utilization into alkaloid production is low in GA-treated roots. and N. K. Srivastava, A. K. Srivastava.
Insect-infested (II) acorns germinated 3 d earlier than the healthy (H) ones. However, germination ratio of II-acorns was strongly decreased compared with H-acorns and there were great differences in activities of amylase. We found an apparently lower net photosynthetic rate and total chlorophyll contents of the first true leaf of II-acorns than of the H-ones. Maximal photochemical efficiency of photosystem 2 (PS2, Fv/Fm) decreased in seedlings germinated from II-acorns than from the H-ones. Infestation of insects, especially for weevil (Curculio spp.) had significantly negative effects on length of taproots, height of plants, dry mass (DM) of roots and the first fully expanded true leaf. Leaf area and total N content of the first true leaf declined due to limitation of resource reserves in cotyledons. Damage of cotyledons caused by weevil accounted much for poor development of seedlings germinated from II-acorns. A mutual relationship between seedling establishment and seed-infesting insects may exist due to high predation on H-acorns by small rodents. and X. F. Yi, Z. B. Zhang
The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (PN) in field-grown plants, indicating the importance of selection for high PN. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf PN, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha-1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher PN, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such and as in tropical high altitudes and in low-land sub-tropics, leaf PN is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments.