In this study, cotton seedlings were subjected to osmotic-, salt- and alkali stresses. The growth, photosynthesis, inorganic ions, and organic acids in the stressed seedlings were measured, to compare the mechanisms by which plants adapt to these stresses and attempt to probe the mechanisms by which plants adapt to high pH stress. Our results indicated that, at high stress intensity, both osmotic and alkali stresses showed a stronger injurious effect on growth and photosynthesis than salt stress. Cotton accumulated large amount of Na+ under salt and alkali stresses, but not under osmotic stress. In addition, the reductions of K+, NO3 -, and H2PO4 - under osmotic stress were much greater than those under salt stress with increasing stress intensity. The lack of inorganic ions limited water uptake and was the main reason for the higher injury from osmotic-compared to salt stress on cotton. Compared with salt- and alkali stresses, the most dramatic response to osmotic stress was the accumulation of soluble sugars as the main organic osmolytes. In addition, we found that organic acid metabolism adjustment may play different roles under different types of stress. Under alkali stress, organic acids might play an important role in maintaining ion balance of cotton; however, under osmotic stress, malate might play an important osmotic role. and W. Chen ... [et al.].
Mixtures of coal/waste tires, coal/waste plastics and coal/waste cotton were pyrolyzed in the laboratory pyrolytical unit built in IRSM AS CR Prague. Non-caking hard coal (mine Lazy) and its mixtures with some organic wastes were pyrolyzed in a quartz reactor inserted in a vertical tube furnace. The main product yields (coke, tar, gas and reaction water) documented exhibit entirely different influence of added waste. Results demonstrated that co-pyrolysis is meaning full in case of waste tiers and plastics. However, in case of co-processing with waste cotton (natural textile), the results are not promising., Vlastimil Kříž and Zuzana Brožová., and Obsahuje bibliografii
Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis in the field conditions under both ambient and higher temperature. Six diverse cotton cultivars were grown in the field at Stoneville, MS under both an ambient and a high temperature regime during the 2006-2008 growing seasons. Mid-season leaf net photosynthetic rates (PN) and dark-adapted chlorophyll fluorescence variable to maximal ratios (Fv/Fm) were determined on two leaves per plot. Temperature regimes did not have a significant effect on either PN or Fv/Fm. In 2006, however, there was a significant cultivar × temperature interaction for PN caused by PeeDee 3 having a lower PN under the high temperature regime. Other cultivars' PN were not affected by temperature. FM 800BR cultivar consistently had a higher PN across the years of the study. Despite demonstrating a higher leaf Fv/Fm, ST 5599BR exhibited a lower PN than the other cultivars. Although genetic variability was detected in photosynthesis and heat tolerance, the differences found were probably too small and inconsistent to be useful for a breeding program., W. T. Pettigrew., and Obsahuje bibliografii
Larval diapause development and termination and some characteristics of cold hardiness in Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) were studied under field conditions in northern Greece. P. gossypiella overwintering larvae were sampled at 20 to 30 day intervals and subjected to two photoperiodic regimes at 20°C. In larvae kept under a long-day photoperiod (16L : 8D) diapause development was accelerated compared to those kept under a short-day photoperiod (8L : 16D). There was no difference in response to the two photoperiods after February. Mean number of days to pupation of P. gossypiella overwintering larvae decreased progressively through the sampling period, from November to April. Chilling is not a prerequisite but does accelerate diapause development. Supercooling points for P. gossypiella overwintering larvae ranged from -14 to -17°C with the majority dying after freezing.
Little is known regarding to impact of simulated shading conditions on cotton yield and fiber quality at different fruiting positions. In this 2-year study, our field experiments investigated the effects of shading percentage on the cotton yield, fiber properties, photosynthesis, and carbohydrate concentrations in boll's subtending leaves during various growing stages at different fruiting positions (FP). Net photosynthetic rate and effective quantum yield of PSII photochemistry decreased in response to shading on both FP1 and FP3 of the 7th sympodial branches, respectively. Shading also reduced sucrose and starch contents of leaves at each fruiting position. Shading decreased the number and mass of cotton bolls, the fiber strength and micronaire, while the fiber length increased at both fruiting positions. Our results suggested that shading resulted in the reduction of the cotton yield and fiber quality, which are mainly associated with the changes in boll number and alteration of photosynthesis and carbohydrate concentrations during the boll development., B. L. Chen, H. K. Yang, Y. N. Ma, J. R. Liu, F. J. Lv, J. Chen, Y. L. Meng, Y. H. Wang, Z. G. Zhou., and Obsahuje bibliografii
Changes in photosynthetic attributes related to genetic improvement of cotton yield were studied in seven Chinese cotton cultivars widely grown in Xinjiang during the past 30 years. Our results showed that a chlorophyll (Chl) content and net photosynthetic rate (PN) of the 1980s cultivar was the highest among all after 60 days from planting (DAP). However, after 75 DAP, the Chl content, PN, and actual photochemical efficiency of PSII of the old cultivars declined gradually, whereas those of the new cultivars remained relatively high. Compared to the old cultivars, leaves of the new cultivars endured a longer period and their senescence was slower, shoot and boll dry mass was higher, but the root to shoot ratio was lower. The lint yield of the 2000s cultivars was 14.7 and 21.4% higher than that of 1990s and 1980s cultivars, respectively. The high yield of the new cultivars was attributed to a greater number of bolls per unit of area with high lint percentage. We suggested that the improved photosynthetic capacity and the increased ability to deliver photosynthates to reproductive sites during the peak boll-setting stage to boll-opening stage were the key physiological basis in the evolution process of cotton cultivars from 1980s to 2000s for the cotton yield improvement within a short growing period., H. H. Luo, H. L. Zhang, Y. L. Zhang, W. F. Zhang., and Obsahuje bibliografii
Cadmium inhibits photosynthetic capacity of plants by disturbing protein conformations, whereas phytocystatins prevent degradation of target proteins and are involved in abiotic stress tolerance. Two mustard (Brassica juncea L.) cultivars, Ro Agro 4001 and Amruta, were grown with Cd (50 µM) in order to study physiological and biochemical basis of differences in Cd tolerance. Amruta accumulated higher Cd and H2O2 concentrations in leaves than that of Ro Agro 4001. Cd significantly decreased photosynthesis and growth of plants in both cultivars by reducing a chlorophyll content, gas exchange parameters, and activity of Rubisco; the effects were more prominent in Amruta than those in Ro Agro 4001. The greater photosynthesis and growth of Ro Agro 4001 under Cd stress might be attributed to its higher phytocystatin activity together with greater ascorbate peroxidase activity, photosynthetic nitrogen-use efficiency, sulphur assimilation (ATP-sulphurylase activity and S content), and contents of cysteine and reduced glutathione compared to Amruta. In contrast, the activity of superoxide dismutase (SOD) was higher in Amruta than that of Ro Agro 4001 under control conditions, whereas the Cd treatment increased significantly the SOD activity in both cultivars with the greater increase in Ro Agro 4001. The fluorescence spectra of phytocystatin showed a lesser change in Ro Agro 4001 under Cd stress than that in Amruta suggesting higher resistance of Ro Agro 4001 to Cd. The higher phytocystatin activity under Cd stress in Ro Agro 4001 compared to Amruta enabled the plants to protect their proteins more efficiently. This resulted in a greater increase of photosynthetic capacity in Ro Agro 4001 than that of Amruta. Thus, the phytocystatin activity may be considered as a physiological parameter for augmenting photosynthesis and growth of mustard under Cd stress., T. S. Per, S. Khan, M. Asgher, B. Bano, N. A. Khan., and Obsahuje bibliografii
Lygus lineolaris (Palisot de Beauvois, 1818) (tarnished plant bug) is a serious pest of cotton (Gossypium hirsutum L.) in the Delta region as compared to cotton in the Hills region of the state of Mississippi in USA. The reason for this is unclear but it was hypothesized that the plant cell wall degrading polygalacturonase enzyme system in the salivary glands of L. lineolaris from the Delta could be better adapted for cotton, which is grown more predominantly in the Delta region than in the Hills region. Expression analysis of three primary polygalacturonase genes (LlPG1, LlPG2 and LlPG3) was conducted in laboratory reared and field collected populations of L. lineolaris. Assay of polygalacturonase enzyme activity was also conducted to compare wild collected populations. Initial laboratory and field data revealed gene expression differences in sex, age, region, and host plant which guided the direction of our subsequent study during 2013 and 2014. Based on the results of this study, we propose that the three genes studied may not be reflective of the entire polygalacturonase enzyme system and may not be solely responsible for the observed adaptation of L. lineolaris to cotton in the Delta region than in the Hills region. Analyses also revealed that the expression of the three targeted polygalacturonase genes was affected by the host plant from which the insects were collected and that adults had higher polygalacturonase expression than nymphs. Taken together, our results provide strong evidence for developmental stage specific and host plant based change in expression of PG genes in the salivary glands of L. lineolaris. This, however, was not reflected in total polygalacturonase enzyme activity which was not significantly different between regions, hosts, sex, or developmental stage., Daniel Fleming, Natraj Krishnan, Fred Musser., and Obsahuje bibliografii