Photochemical efficiency, photosynthetic capacity, osmoprotectants, and relative water content (RWC) were recorded in saplings of two evergreen plants (Boehmeria rugulosa Wedd. and Olea glandulifera Wall. ex G. Don) grown inside (GL) and outside (OP) a glasshouse during the winter season. The OP plants experienced 2.0-2.5 °C lower air temperature and dew formation in comparison to GL plants. Diurnal observations indicated no change in RWC in the leaves of GL and OP plants, while significant reduction in both transpiration and net photosynthetic (PN) rates was observed in OP plants: the reduction in PN was much more prominent as was also reflected by poor water use efficiency of these plants. Similarly, OP plants also showed decrease in the apparent quantum yield and irradiance-saturated CO2 assimilation rate. The decrease in PN was not associated with decreased stomatal conductance. However, a significant reduction in the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and Chl content was recorded in the OP plants which also contained more total soluble saccharides but less proline contents. The greater enhancement of PN at 15 °C in comparison to measurements taken at 10 °C in OP plants over GL plants probably indicated an increase in mesophyll capacity of the OP plants' growth at increased temperature. Hence the enhanced growth and productivity of plants grown in sheltered environments could be associated to their higher photosynthetic activity that may have important bearing on their field establishment and productivity in the long run. The response varied with plant species; reduction in PN was greater in B. rugulosa than in O. glandulifera. However, the recovery of OP plants in terms of Fv/Fm in the subsequent months revealed that photosynthetic system of these plants is revocable. and S. C. Joshi, S. Chandra, L. M. S. Palni.
a1_The photosynthetic and chlorophyll fluorescence parameters were studied in Ziziphus jujuba var. spinosus under different soil water gradients obtained by irrigation and natural water consumption. We used the rectangular hyperbola model, the nonrectangular hyperbola model, the exponential model, and the modified rectangular hyperbola model to fit our data and evaluate them quantitatively. Based on the relationship among the parameters, the effects of the availability of soil water on photosynthesis were elucidated. The results showed that: (1) The relationship between water content and photosynthetic parameters were fitted best by the modified rectangular hyperbola model, followed by the nonrectangular hyperbola model, the exponential model, and the rectangular hyperbola model. The modified rectangular hyperbola model fitted best the maximum net photosynthetic rate (PNmax) and the light-saturation point (LSP), while the nonrectangular hyperbola model fitted best the dark respiration rate (RD), the apparent quantum yield (AQY), and the light-compensation point (LCP)., a2_(2) The main reason for the net photosynthetic rate (PN) decline was that it reached a stomatal limit when the soil relative water content (RWC) was greater than 25% and it reached a nonstomatal limit when the RWC was lesser than 25%. Under these conditions, the photosynthetic apparatus of Z. jujuba was irreversibly damaged. (3) Pmax, RD, AQY, and LSP increased first and then decreased, while LCP increased contrary to the RWC. The P N light-response parameters reached optimum when the RWC was 56-73%. (4) The quantum yield of PSII photochemistry reached a maximum when RWC was 80%. Nonphotochemical quenching decreased rapidly, and the minimum fluorescence in the dark-adapted state increased rapidly when RWC was lesser than 25%. Under these conditions, PSII was irreversibly damaged. (5) The RWC range of 11-25% resulted in low productivity and low water use efficiency (WUE). The RWC range of 25-56% resulted in moderate productivity and moderate WUE, and the RWC range of 56-80% resulted in high productivity and high WUE. The RWC range of 80-95% resulted in moderate productivity and low WUE. In summary, photosynthesis of Z. jujuba was physiologically adaptable in response to water stress in sand formed from seashells. The photosynthetic and physiological activity was maintained relatively high when the RWC was between 56 and 80%; Z. jujuba seedlings grew well under these conditions., J. B. Xia, G. C. Zhang, R. R. Wang, S. Y. Zhang., and Obsahuje bibliografii
The grapevine (Vitis vinifera L. cv. Riesling) plants subjected to water deficit were studied for changes in relative water content (RWC), leaf dry mass, contents of chlorophyll (Chl), total leaf proteins, free amino acids, and proline, and activities of ribulose-1,5-bisphosphate carboxylase (RuBPC), nitrate reductase (NR), and protease. In water-stressed plants RWC, leaf dry matter, Chl content, net photosynthetic rate (PN), and RuBPC and NR activities were significantly decreased. The total leaf protein content also declined with increase in the accumulation of free amino acids. Concurrently, the protease activity in the tissues was also increased. A significant two-fold increase in proline content was recorded. and M. Bertaminni ... [et al.].
The present study aimed to determine effects of drought stress on Lycium ruthenicum Murr. seedlings. Our results showed that mild drought stress was beneficial to growth of L. ruthenicum seedlings. Their height, basal diameter, crown, leaf number, stem dry mass, leaf and root dry mass increased gradually when the soil water content declined from 34.7 to 21.2%. However, with further decrease of the soil water content, the growth of L. ruthenicum seedlings was limited. After 28 d of treatment, the seedlings were apparently vulnerable to drought stress, which resulted in significant leaf shedding and slow growth. However, growth was restored after rehydration. Drought treatments led to a decrease in contents of chlorophyll (Chl) a, b, and Chl (a+b) and increase in the Chl a/b ratio. After rewatering, the Chl content recovered to the content of the control plants. Under drought stress, minimal fluorescence and nonphotochemical quenching coefficient increased, thereby indicating that L. ruthenicum seedlings could protect PSII reaction centres from damage. Maximum fluorescence, maximum quantum yield, actual quantum yield of PSII photochemistry, and photochemical quenching decreased, which suggested that drought stress impacted the openness of PSII reaction centres. A comparison of these responses might help identify the drought tolerance mechanisms of L. ruthenicum. This could be the reference for the planting location and irrigation arrangements during the growing period of L. ruthenicum., Y.-Y. Guo, H.-Y. Yu, D.-S. Kong, F. Yan, Y.-J. Zhang., and Obsahuje bibliografii
The interactive effect of elevated CO2 (EC) and moisture stress (MS) on Brassica juncea cv. Pusa Bold was studied using open-top chambers. The EC markedly increased net photosynthetic rate and internal CO2 concentration and reduced variable and maximal chlorophyll fluorescence. Under MS, EC increased water potential and relative water content, and reduced transpiration rate. The greater allocation of biomass to the roots, which serve as a strong sink for assimilated carbon under EC, helped in better root growth. and B. K. Rabha, D. C. Uprety.
Effects of high-temperature stress (HTS) and PEG-induced water stress (WS), applied separately or in combination, on the functional activity and ultrastructure of the photosynthetic apparatus (PSA) of maize (Zea mays L.) and sunflower (Helianthus annuus L.) plants were investigated. In maize plant tissues WS provoked the decrease in RWC by 10.9 %, HTS by 7.0 %, and after simultaneous application of the both treatments the decrease was 32.7 % in comparison with control plants. Similar but more expressed changes were observed in sunflower plants. Sunflower was more sensitive to these stresses. Net photosynthetic rate decreased significantly after all treatments, more in sunflower. In mesophyll chloroplasts after separately applied WS and HTS the number of grana and thylakoids was reduced and electron-transparent spaces appeared. At combined stress (WS+HTS) granal and stromal thylakoids were considerably affected and chloroplast envelope in many of them was partially disrupted. and I. Dekov, T. Tsonev, I. Yordanov.
We studied water relations and gas exchange in six almond genotypes grafted on GF677 in response to withholding irrigation for 14 days and a subsequent 10-day rehydration period. The responses to drought stress significantly differed in the almond genotypes; the tolerant plants were distinguished and monitored. Leaf relative water content (RWC) decreased by more than 23%, leaf water potential dropped to less than -4.3 MPa, and electrolyte leakage increased to 43% in dehydration-sensitive genotypes. Photosynthesis (PN) and stomatal conductance (gs) of drought-sensitive genotypes were significantly reduced by 70% and 97% in response to water deficiency. Water stress significantly enhanced wateruse efficiency up to 10 folds in drought-tolerant almonds. The difference between leaf temperature and its surrounding air temperature (ΔT) increased significantly to more than 187% under water stress in drought-tolerant genotypes. In addition, the reduction in the g s and further ability to preserve RWC were involved probably in drought-tolerance mechanism in almond. Negative significant correlations were found between ΔT, PN, and gs. Based on the correlations, we suggested that ΔT could be used as a simple measurement for monitoring water stress development in the irrigation management of almond orchards. In conclusion, ‘Supernova’ and the Iranian genotypes ‘6-8’ and ‘B-124’, were found to be more droughttolerant compared with other genotypes in this experiment., S. Karimi, A. Yadollahi, K. Arzani, A. Imani, M. Aghaalikhani., and Obsahuje bibliografii
Poplars (Populus spp.) are widely used in the pulp and paper industry and as bioenergy resources. Poplars require a large amount of water for biomass accumulation and lack of water is a limiting factor for poplar growth. Arbuscular mycorrhizal (AM) fungi have been previously reported to afford some plant species with greater resistance to drought stress. However, the effects of AM fungi on hybrid poplar under drought stress and recovery have not been studied. The main aim of this study was to evaluate the effects of the AM fungus, Rhizophagus irregularis, on the growth, water status, chlorophyll (Chl) content and fluorescence, and photosynthesis of poplar seedlings. The experiment was divided into three stages. At each stage of the experiment, the seedlings were subjected to a different watering regime: well-watered (prior stress), drought, and then rewatering (recovery). Measurements were taken at the end of each stage of the experiment. The results showed that mycorrhizal plants had a higher net photosynthetic rate and Chl fluorescence compared with nonmycorrhizal plants, regardless of the stage. Mycorrhizal and nonmycorrhizal plants showed different responses to drought stress: mycorrhizal plants showed better water-use efficiency and water uptake under drought stress conditions. In general, the poplar seedlings that formed the AM symbiosis with R. irregularis showed enhanced growth and reduced loss of biomass during the drought stress compared with the nonmycorrhizal seedlings., T. Liu, M. Sheng, C. Y. Wang, H. Chen, Z. Li, M. Tang., and Obsahuje bibliografii
Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, Quercus ilex L. and Phillyrea latifolia L. (typical evergreen sclerophyllous shrubs) and Cistus incanus L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. C. incanus showed the highest annual rate of net photosynthetic rate (PN) and stomatal conductance (gs) decreasing by 67 and 69 %, respectively, in summer. P. latifolia and Q. ilex showed lower annual maximum PN and gs, although PN was less lowered in summer (40 and 37 %, respectively). P. latifolia reached the lowest midday leaf water potential (Ψ1) during the drought period (-3.54±0.36 MPa), 11 % lower than in C. incanus and 19 % lower than in Q. ilex. Leaf relative water content (RWC) showed the same trend as Ψ1. C. incanus showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in P. latifolia and Q. ilex; moreover C. incanus showed the lowest recovery of Ψ1 at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, Q. ilex and P. latifolia by their water use strategy seem to be less sensitive to drought stress than C. incanus. and A. Bombelli, L. Gratani.
Anastatica hierochuntica is an annual desert plant, which was recently shown to have unusually low nonphotochemical quenching (NPQ) and a high PSII electron transport rate (ETR). In the current study, we examined how these unusual characteristics are related to a lack of CO2 and inhibition of net photosynthetic rate (P N). We compared the photosynthetic and photoprotective response of A. hierochuntica and sunflower (Helianthus annuus), under conditions of photosynthetic inhibition, with either low CO2 or drought. We found that under nonsteady state conditions of low CO2 availability, A. hierochuntica exhibited about half of the NPQ values and almost twice of the ETR values of H. annuus. However, the long-term inhibition of P N under drought caused a similar increase in NPQ and a decrease in ETR in both A. hierochuntica and H. annuus. These results suggest that the unusually low NPQ and high ETR in A. hierochuntica are not directly related to a response to drought conditions., A. Eppel, S. Rachmilevitch., and Obsahuje seznam literatury