Increasing the biodiversity in plantations of trees is an important issue because plantations have replaced many natural and semi-natural ecosystems worldwide. Therefore, identifying appropriate management techniques and key factors for enhancing biodiversity in plantations is required. We surveyed butterfly assemblages along forest trails in both plantations and natural forests and measured various environmental variables, including canopy, sub canopy and shrub stem densities, percentage of deciduous trees, flower plant richness, host plant richness, canopy openness and distance to forest edge. We hypothesized that (1) flower and host plant richness increase with an increase in the percentage of deciduous trees and canopy openness; (2) butterfly richness and abundance increase with an increase in forest structural complexity, butterfly resources, canopy openness and distance to forest edge; (3) the responses of plants and butterflies to canopy openness differ in plantations and natural forests; and (4) in plantations, tree-feeding butterflies respond to canopy openness less strongly than herbaceous plant feeding butterflies do because of the low diversity of trees in plantations. Our results generally support these hypotheses. Butterfly resources and butterfly richness and abundance all increase with increasing canopy openness; however, the increases were usually more dramatic in natural forests than in plantations and other factors are less important. In plantations, herbaceous plant feeding butterflies responded to increasing canopy openness more strongly than tree-feeding butterflies. The results of the present study indicate the importance of sunlit forest trails in enhancing butterfly resources, butterfly richness and abundance in plantations. Because at the stand-level management is labour- and cost-intensive, labour- and cost-saving trail management options need to be explored further in terms their effectiveness in increasing biodiversity in plantations.
Field trials under rain-fed conditions at the International Center for Tropical Agriculture (CIAT) in Colombia were conducted to study the comparative leaf photosynthesis, growth, yield, and nutrient use efficiency in two groups of cassava cultivars representing tall (large leaf canopy and shoot biomass) and short (small leaf canopy and shoot biomass) plant types. Using the standard plant density (10,000 plants ha-1), tall cultivars produced higher shoot biomass, larger seasonal leaf area indices (LAIs) and greater final storage root yields than the short cultivars. At six months after planting, yields were similar in both plant types with the short ones tending to form and fill storage roots at a much earlier time in their growth stage. Root yield, shoot and total biomass in all cultivars were significantly correlated with seasonal average LAI. Short cultivars maintained lower than optimal LAI for yield. Seasonal PN, across cultivars, was 12% greater in short types, with maximum values obtained in Brazilian genotypes. This difference in PN was attributed to nonstomatal factors (i.e., anatomical/biochemical mesophyll characteristics). Compared with tall cultivars, short ones had 14 to 24 % greater nutrient use efficiency (NUE) in terms of storage root production. The lesser NUE in tall plants was attributed mainly to more total nutrient uptake than in short cultivars. It was concluded that short-stemmed cultivars are superior in producing dry matter in their storage roots per unit nutrient absorbed, making them advantageous for soil fertility conservation while their yields approach those in tall types. It was recommended that breeding programs should focus on selection for more efficient short- to medium-stemmed genotypes since resource-limited cassava farmers rarely apply agrochemicals nor recycle residual parts of the crop back to the soil. Such improved short types were expected to surpass tall types in yields when grown at higher than standard plant population densities (>10,000 plants ha-1) in order to maximize irradiance interception. Below a certain population density (<10,000 plants ha-1), tall cultivars should be planted. Findings were discussed in relation to cultivation and cropping systems strategies for water and nutrient conservation and use efficiencies under stressful environments as well as under predicted water deficits in the tropics caused by trends in global climate change. Cassava is expected to play a major role in food and biofuel production due to its high photosynthetic capacity and its ability to conserve water as compared to major cereal grain crops. The interdisciplinary/interinstitutions research reported here, including, an associated release of a drought-tolerant, short-stem cultivar that was eagerly accepted by cassava farmers, reflects well on the productivity of the CIAT international research in Cali, Colombia., and M. A. El-Sharkawy, S. M. de Tafur
Field trials with a large group of cassava germplasm were conducted at the seasonally-dry and hot environments in southwest Colombia to investigate photosynthetic characteristics and production under drought conditions. Measurement of net photosynthetic rate (PN), photosynthetic nitrogen use efficiency (PNUE), mesophyll conductance to CO2 diffusion (g m), and phosphoenolpyruvate carboxylase (PEPC) activity of upper canopy leaves were made in the field. All photosynthetic characteristics were significantly correlated with final dry root yield (Yield). Correlations among the photosynthetic traits were also significant. PEPC activity was highly significantly correlated with PN and PNUE, indicating the importance of the enzyme in cassava photosynthesis and productivity. Among a small selected group from the preliminary trial for yield performance, the second year Yield was highly significantly correlated with PN measured on the first year crop. Thus variations in the measured photosynthetic traits are genetically controlled and underpin variations in yield. One short-stemmed cultivar M Col 2215 was selected for high root dry matter content, high harvest index, and tolerance to drought. It was tested under the semi-arid conditions of the west coast of Ecuador; participating farmers evaluated cultivar performance. This cultivar was adopted by farmers and officially released in 1992 under the name Portoviejo 650. and M. A. El-Sharkawy, Y. Lopez, L. M. Bernal.
The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (PN) in field-grown plants, indicating the importance of selection for high PN. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf PN, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha-1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher PN, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such and as in tropical high altitudes and in low-land sub-tropics, leaf PN is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments.
In individual leaves, the photon-saturated photosynthetic activity (Psat, expressed on a dry mass basis) was closely related to the nitrogen content (Nc) as follows: Psat = Cf Nc + Psat0, where Cf and Psat0 are constants. On a whole plant basis, the relative growth rate (RGR) was closely related to Nc in canopy leaf as follows: RGR = DMf Nc + RGR0, where DMf and RGR0 are constants. However, the coefficients Cf and DMf were markedly different among plant species. To explain these differences, it is suggested that carbon assimilation (or dry matter production) is controlled by both the Nc in a leaf (or leaves) and by the net N translocation from leaves. This is supported by the finding that Psat is related to the rate of 35S-methionine translocation from leaves. We propose another estimation method for the net N translocation rate (NFR) from leaves: Nc, after full leafing, is expressed as a function of time: Nc = (Nc0 - Ncd) exp(-Nft) + Ncd, where Nf is a coefficient, t is the number of days after leaf emergence, Nc0 is the initial value of Nc, and Ncd is the Nc of the dead leaf. The NFR is then calculated as NFR = ΔNc/Δt = -Nf (Nc - Ncd). Thus Nf is the coefficient for the NFR per unit Nc. NFR is a good indicator of net N translocation from leaves because NFR is closely related to the rate of 35S-methionine translocation from leaves. Since Psat is related to the 14C-photosynthate translocation rate, Cf (or DMf) corresponds to the coefficient of saccharide translocation rate per unit amount of Nc. Cf (or DMf) is closely related to the Nf of individual leaves (or the Nf of canopy leaf). This indicates that C assimilation and C translocation from leaves are related to Nc and N translocation from leaves (net translocation of N). Cf and Nf are negatively correlated with leaf longevity, which is important because a high or low CO2 assimilation rate in leaves is accompanied by a correspondingly high or low N translocation in leaf, and the degree of N translocation in leaves decreases or increases leaf longevity. Thus, since a relatively high Psat (or RGR) is accompanied by a rapid Nc decrease in leaves, it is difficult to maintain a high Psat (or RGR) for a sustained time period. and M. Osaki, T. Shinano.
Productivity of most improved major food crops showed stagnation in the past decades. As human population is projected to reach 9-10 billion by the end of the 21st century, agricultural productivity must be increased to ensure their demands. Photosynthetic capacity is the basic process underlying primary biological productivity in green plants and enhancing it might lead to increasing potential of the crop yields. Several approaches may improve the photosynthetic capacity, including integrated systems management, in order to close wide gaps between actual farmer’s and the optimum obtainable yield. Conventional and molecular genetic improvement to increase leaf net photosynthesis (P N) are viable approaches, which have been recently shown in few crops. Bioengineering the more efficient CC4 into C3 system is another ambitious approach that is currently being applied to the C3 rice crop. Two under-researched, yet old important crops native to the tropic Americas (i.e., the CC4 amaranths and the C3-CC4 intermediate cassava), have shown high potential P N, high productivity, high water use efficiency, and tolerance to heat and drought stresses. These physiological traits make them suitable for future agricultural systems, particularly in a globally warming climate. Work on crop canopy photosynthesis included that on flowering genes, which control formation and decline of the canopy photosynthetic activity, have contributed to the climate change research effort. The plant breeders need to select for higher P N to enhance the yield and crop tolerance to environmental stresses. The plant science instructors, and researchers, for various reasons, need to focus more on tropical species and to use the research, highlighted here, as an example of how to increase their yields., M. A. El-Sharkawy., and Obsahuje seznam literatury
Seasonal variations in photosynthesis of cassava cv. Rayong 9 (RY9) under irrigated and rain-fed conditions were evaluated at the age of three and six months after planting (MAP). Photosynthetic light-response (PN/I) curves revealed that cassava leaves attained the highest maximum net photosynthetic rates (PNmax) in the rainy season, followed by the hot one, while the lowest PNmax was found in the cool season. Photosynthetic potential of the 3-month-old plants was mostly higher than that of the 6-month-old plants, and the seasonal variation in photosynthetic capacity was also more apparent in the younger plants. PN/I curves were used to predict daily net photosynthetic rate (PN) for each season based on daily average solar radiation data. The predicted PN were considerably lower than the PNmax values. This indicated that solar radiation is a limiting factor for photosynthesis, particularly in the rainy season. The data provided basic information for breeding cassava genotypes with enhanced photosynthesis during the period of unfavorable environment. Furthermore, the data are potentially useful in modeling photosynthesis and crop growth as affected by environmental factors., K. Vongcharoen, S. Santanoo, P. Banterng, S. Jogloy, N. Vorasoot, P. Theerakulpisut., and Obsahuje bibliografii
The objective of this study was to assess genotypic variation in soybean chlorophyll (Chl) content and composition, and to test if these data could be used as a rapid screening method to predict genotypic variation in leaf tissue N content. Chl contents and composition were examined among 833 soybean (Glycine max L. Merr.) accessions and related to SPAD meter readings and leaf N content. In the initial year of the study (2002), the relationship between leaf Chl and leaf N contents (r 2 = 0.043) was not sufficiently close for Chl to be useful as a predictive tool for leaf N content. Therefore, leaf N content was not determined in 2004 but samples were again collected for determination of Chl content and composition. In 2002, the soybean accessions separated into two distinct groups according to leaf Chl a/b ratios, with the majority of a mean ratio of 3.79. However, approximately 7 % (60) of the genotypes could be readily assigned to a group with a mean Chl a/b ratio of 2.67. Chl a/b analyses in 2004 confirmed the results obtained in 2002 and of 202 genotypes, all but 6 fell into the same group as in 2002. and F. B. Fritschi, J. D. Ray.
Despite their wide distribution and frequent occurrence, the spatial distribution patterns of the well-known gall-inducing insects Mikiola fagi (Hartig) and Neuroterus quercusbaccarum (L.) in the canopies of mature trees are poorly described. We made use of the Swiss Canopy Crane (SCC) near Basel, Switzerland, to gain access to the canopy of a mixed temperate forest up to a height of 35 m. Within one and a half days we scanned 6,750 beech leaves and 6,000 oak leaves. M.fagi showed a distinct vertical zonation with highest abundance in the top-most parts of the canopy as well as a significant aggregation on particular trees. N. quercusbaccarum showed an even more pronounced preference for particular trees and a general preference for Quercus robur over Q. petraea. In contrast to M. fagi, no vertical zonation could be detected. We think that both gall-inducing species have greater powers of dispersal than formerly assumed since they overwinter on the forest floor and yet are able to 1) gain access to the entire canopy, 2) show preference for certain host trees. We found little evidence for the phenological synchrony hypothesis proposed to explain the intertree distribution of N. quercusbaccarum. The highest density of M. fagi galls was in those parts of the canopy exposed to high solar radiation; their host choice is probably determined by micro-climatological factors. The consequences of the distribution patterns of N. quercusbaccarum and M. fagi for their ecological interactions with the host-plant, inquilines and parasitoids (e.g., canopy-layer specific performance linked to plant chemistry, density-dependent parasitism) need now to be subjected to further scientific investigation.