In order to study the mechanisms of Se-mediated growth improvement as related to carbon (C) and nitrogen (N) metabolism, wheat plants were cultivated hydroponically with adequate (4 mM, Na) or low (1 mM, Nd) N supply and treated with 10 and 50 μM Na2SeO4 for six weeks. The Se supplementation enhanced plant biomass; it was significant for shoots of Na plants at 50 μM Se. Chlorophyll fluorescence parameters were significantly lowered under Nd conditions but restored completely by Se addition reaching values of those in Na plants. Net CO2 assimilation rate (PN) decreased only slightly by limited N availability, but it enhanced significantly in both Nd and Na plants equally by 10 and 50 μM Se. Effect of Se on PN in the Na plants occurred mainly due to the stomata opening, while it was related to both stomatal and nonstomatal mechanisms in the Nd plants. The Se treatment resulted in enhancement of nitrate reductase (NR) activity in both Na and Nd plants with an optimal response at 10 μM Se. Negative correlations between nitrate concentration and NR activity indicated a partial nitrate depletion in the roots following by elevated NR activity in Nd plants. In contrast, nitrite concentrations were higher in the Se treated plants. Higher amino acids and protein concentrations in the Se-treated plants might be an indication of a general upregulation of N metabolism. However, in Na plants, the stimulation of N metabolism was not observed at 50 μM Se which could not be attributed to lesser availability of C skeletons because of maintaning higher CO2 fixation under these conditions. It implies the function of some regulatory mechanisms that are responsible for coordination of C and N metabolism in whole plant., R. Hajiboland, N. Sadeghzade., and Obsahuje bibliografii
Field experiments were conducted on four cultivars of wheat (Triticum aestivum L.) to examine the variability in cultivar response to sulphur dioxide (SO2) under different concentrations of mineral nutrients. Thirty-days-old plants were exposed for 8 weeks to 390±20 µg m-3 (0.15 ppm) SO2 for 4 h per day, 5 d per week. Decline in net photosynthetic rate, contents of pigments and nitrogen, biomass and grain yield of each cultivars were due to SO2 at all the nutrient concentrations studied. However, the magnitude of reduction was higher in plants grown without nutrient application. On the basis of the reductions in photosynthesis and yield, the susceptibility of wheat cultivars to SO2 was in the order of Malviya 213 > Malviya 37 > Malviya 206 > Malviya 234 at recommended dose of NPK, whereas the same without the nutrients was Malviya 206 > Malviya 234 > Malviya 213 > Malviya 37. and M. Verma, M. Agrawal, S.S. Deepak.
The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (PN) in field-grown plants, indicating the importance of selection for high PN. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf PN, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha-1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher PN, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such and as in tropical high altitudes and in low-land sub-tropics, leaf PN is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments.
The distributions of the tetraploid Anthoxanthum odoratum and diploid A. alpinum were first studied in the Krkonoše Mts (part of the Sudetes Mts) to find the transition zone where both species occur together and then their ecological requirements in this zone were determined. The distribution was studied at two spatial scales, geographic and local; the latter included detailed distribution at a locality level, where the relationships of both species to plant communities were investigated. The zone where the overlap occurs is between 800–1290 m a.s.l. Anthoxanthum alpinum is able to descend to even lower altitudes, where it grows in vegetation dominaned by Nardus stricta. The species commonly occur in a fine mosaic of plant communities of Polygono-Trisetion (A. odoratum), Nardion (A. alpinum) or Nardo-Agrostion tenuis (both species). Anthoxanthum alpinum also occurs in areas that are currently not in direct contact with either alpine or subalpine vegetation (the Rýchory ridge, Černá hora Mt).
Semi-dry grasslands in the White Carpathian (Bílé Karpaty) Mountains on the Czech-Slovak border are famous for their extremely high species richness. In places they contain more than 130 species of vascular plants per 100m2 and for some plot sizes they hold world records in the number of vascular plant species, but the reasons for this are poorly understood. Here we ask whether the high number of species in these grasslands can be explained by local ecological factors. We compared the White Carpathian grasslands with similar grasslands in adjacent areas in the west (southern Moravia) and the east (Inner Western Carpathians), which are on average notably poorer in species than those in the White Carpathians. In both of these areas, we sampled grasslands that were among the species richest in the regional context and had a similar physiognomy, species composition and ecology as those in the White Carpathians. We found 75 sites with >70 and >25 species of vascular plants per 100 m2 and 1 m2, respectively, in which we recorded species composition and local environmental conditions, including precipitation, soil depth, soil pH and nutrient concentrations, above-ground biomass production and nutrients in plant biomass. Although the White Carpathian grasslands were considerably richer in species than the richest grasslands in the adjacent regions, there were no differences in the values of the factors studied that could provide an unequivocal explanation of their high species richness. However, the values of the factors studied were within the ranges reported in the literature as conducive to high species richness in temperate grasslands. We conclude that the high species richness recorded in the White Carpathian grasslands cannot be explained by a single factor. It results from a unique combination of regional factors (long history of these grasslands, large size of individual grassland areas and their existence in a landscape mosaic with forests, scrub and small wetlands), local abiotic factors (soil pH, soil nutrient status, moisture regime and resulting grassland productivity that are suitable for many species from the regional species pool) and management (low fertilizer input and mowing once a year in late spring or summer).