Anthropogenic activities and improper uses of phosphate fertilizers have led to an increase in cadmium concentrations in agricultural soils. Brassinosteroids are steroid hormones that are rapidly assimilated and metabolised with beneficial roles in physiological and biochemical processes in plants. Our aim was to ascertain whether exogenous treatment with 24-epibrassinolide (EBR) can mitigate the Cd toxicity, and whether this substance can reduce the Cd accumulation in plant tissues. Furthermore, the dose response to EBR was determined following exposure to Cd in Vigna unguiculata. The experiment was a completely randomised factorial design with two concentrations of Cd (0 and 500 μM) and three concentrations of EBR (0, 50, and 100 nM). Spraying plants exposed to Cd with EBR significantly reduced the concentrations of Cd and increased nutrient contents in all tissues. The EBR treatment caused significant enhancements in leaf, root, and total dry matter. Foliar application of EBR reduced the negative effects of Cd toxicity on chlorophyll fluorescence and gas exchange parameters. Pretreatment with EBR also increased contents of pigments in plants exposed to Cd, compared with the identical treatments without EBR. Cd elevated contents of oxidant compounds, inducing cell damages, while EBR significantly decreased the concentrations of these compounds. We confirmed that EBR mitigated the negative effects related to Cd toxicity, reduced the absorption and transport of Cd, and increased the contents of essential elements. In plants exposed to Cd, the most apparent dose response was found for 100 nM EBR, with beneficial repercussions on growth, gas exchange, primary photosynthetic processes, and photosynthetic pigments, which were intrinsically connected to lower production of oxidant compounds and cell damage., L. R. Santos, B. L. Batista, A. K. S. Lobato., and Obsahuje bibliografii
Tartary buckwheat (Fagopyrum tataricum Gaertn) has been praised as one of green foods for humans in the 21st century. Effects of fertilization on leaf photosynthetic characteristics and grain yield of tartary buckwheat has not been yet reported in detail. Our experiment was set as a split-plot factorial. The main plots and subplots were designed by fertilizer ratio and rate as: NPK 1:1:1 (A1), NPK 1:4:2 (A2), NPK 1:2:3 (A3), and 300 (B1), 450 (B2), and 600 (B3) kg (NPK) ha-1. Our results showed that the grain yield was significantly and positively correlated with the net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), PAR, stomatal limitation value (Ls), chlorophyll content (SPAD value), and leaf area index (LAI), while significantly and negatively correlated with intercellular CO2 concentration (Ci) and water-use efficiency (WUE). The grain yield, PN, gs, E, PAR, Ls, SPAD, and LAI increased and then decreased with enhanced fertilization, and their maximum values appeared in the A2B2 treatment. The Ci and WUE decreased and then increased with enhanced fertilization, and their minimum values appeared in the A2B2 treatment. Our results suggested that fertilization had significant effects on the leaf photosynthetic capacity and grain yield of tartary buckwheat
Yunqiao1, and the best fertilization strategy was 450 kg ha-1 with NPK 1:4:2., C. Wang, H. Z. She, X. B. Liu, D. Hu, R. W. Ruan, M. B. Shao, L. Y. Zhang, L. B. Zhou, G. B. Zhang, D. Q. Wu, Z. L. Yi., and Obsahuje bibliografii
The study of leaf vascular systems is important in order to understand the fluid dynamics of water movement in leaves. Recent studies have shown how these systems can be involved in the performance of photosynthesis, which is linked to the density of the vascular network per unit of leaf area. The aim of the present study was to highlight the correlation between a leaf vein density (VD) and net photosynthetic rate (PN), which was undertaken using a digital camera, a stereoscopic microscope, and a light source. The proposed hypothesis was tested, for the first time, on the leaves of two cultivars of Vitis vinifera (L.). A significant difference was found between the VD of mature leaves of the two cultivars. VD was also significantly correlated with the maximum leaf PN. These findings support the hypothesis that the vascular system of grape leaves can be correlated with leaf photosynthesis performance., M. Pagano, P. Corona, P. Storchi., and Obsahuje bibliografii
Anthropogenic activities are changing global precipitation regimes and result in many middle latitude arid and semiarid regions experiencing less precipitation and more extreme weather events. However, little is known about the response of active ingredient accumulation in the medicinal herb Plantago depressa Willd. Therefore, we carried out a greenhouse experiment in order to study effect of control (CK, normal water supply equal to 309 mm per four months), -30 (-WS) and +30% (+WS) of the control water supply on the photosynthesis (PN), C/N ratio, and plantamajoside accumulation in P. depressa. Our results showed that compared with the-WS and CK treatments, the +WS treatment significantly enhanced biomass, the C/N ratio, plantamajoside concentration, yield in shoots and roots, and PN, but declined the N concentration in shoots and roots. The plantamajoside concentration was positively correlated with PN, the soluble sugar content, and the C/N ratio, but negatively correlated with the N concentration. Our results suggested that, under experimental conditions, +WS increased the C/N ratio and promoted the plantamajoside accumulation of P. depressa., Z. Li, W. Bai, L. Zhang, L. Li., and Obsahuje bibliografii