Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis in the field conditions under both ambient and higher temperature. Six diverse cotton cultivars were grown in the field at Stoneville, MS under both an ambient and a high temperature regime during the 2006-2008 growing seasons. Mid-season leaf net photosynthetic rates (PN) and dark-adapted chlorophyll fluorescence variable to maximal ratios (Fv/Fm) were determined on two leaves per plot. Temperature regimes did not have a significant effect on either PN or Fv/Fm. In 2006, however, there was a significant cultivar × temperature interaction for PN caused by PeeDee 3 having a lower PN under the high temperature regime. Other cultivars' PN were not affected by temperature. FM 800BR cultivar consistently had a higher PN across the years of the study. Despite demonstrating a higher leaf Fv/Fm, ST 5599BR exhibited a lower PN than the other cultivars. Although genetic variability was detected in photosynthesis and heat tolerance, the differences found were probably too small and inconsistent to be useful for a breeding program., W. T. Pettigrew., and Obsahuje bibliografii
The study of leaf vascular systems is important in order to understand the fluid dynamics of water movement in leaves. Recent studies have shown how these systems can be involved in the performance of photosynthesis, which is linked to the density of the vascular network per unit of leaf area. The aim of the present study was to highlight the correlation between a leaf vein density (VD) and net photosynthetic rate (PN), which was undertaken using a digital camera, a stereoscopic microscope, and a light source. The proposed hypothesis was tested, for the first time, on the leaves of two cultivars of Vitis vinifera (L.). A significant difference was found between the VD of mature leaves of the two cultivars. VD was also significantly correlated with the maximum leaf PN. These findings support the hypothesis that the vascular system of grape leaves can be correlated with leaf photosynthesis performance., M. Pagano, P. Corona, P. Storchi., and Obsahuje bibliografii
The effect of salinity on some morpho-physiological characteristics in lisianthus cultivars was investigated. Cultivars namely, Blue Picotee (C1), Champagne (C2), Lime Green (C3), and Pure White (C4), were subjected to salt stress (0-60 mM NaCl) in a sand culture and their responses were measured. Our results showed that as a salinity level increased, growth parameters, relative water content, photosynthetic pigments, and gas-exchange characteristics decreased in all cultivars, while root fresh mass, root/shoot length ratio, electrolyte leakage, and a malondialdehyde content increased. However, the changes were less pronounced in C3 and C4 compared to C1 and C2. The regression analysis of the relationship between salinity levels and seedling height or root/shoot length ratio defined two groups with different slope coefficients: C1 and C2 as salt-sensitive cultivars and C3 and C4 as salt-tolerant cultivars. Shoot dry mass and leaf area tolerance indices were less affected by salinity in C3 and C4 compared to those in C1 and C2. Further, C3 and C4 showed higher photosynthetic rates, greater stomatal conductances, and accumulated greater K+ and Ca2+ contents and K+/Na+ ratios in roots and shoots compared to those in C1 and C2. The results suggests that C3 and C4 could be recommended as resistant cultivars due to maintaining higher growth, water balance, leaf gas exchange, ion compartmentalization, and lower lipid peroxidation in response to salinity compared to C1 and C2., N. Ashrafi, A. Rezaei Nejad., and Obsahuje bibliografii
Cadmium inhibits photosynthetic capacity of plants by disturbing protein conformations, whereas phytocystatins prevent degradation of target proteins and are involved in abiotic stress tolerance. Two mustard (Brassica juncea L.) cultivars, Ro Agro 4001 and Amruta, were grown with Cd (50 µM) in order to study physiological and biochemical basis of differences in Cd tolerance. Amruta accumulated higher Cd and H2O2 concentrations in leaves than that of Ro Agro 4001. Cd significantly decreased photosynthesis and growth of plants in both cultivars by reducing a chlorophyll content, gas exchange parameters, and activity of Rubisco; the effects were more prominent in Amruta than those in Ro Agro 4001. The greater photosynthesis and growth of Ro Agro 4001 under Cd stress might be attributed to its higher phytocystatin activity together with greater ascorbate peroxidase activity, photosynthetic nitrogen-use efficiency, sulphur assimilation (ATP-sulphurylase activity and S content), and contents of cysteine and reduced glutathione compared to Amruta. In contrast, the activity of superoxide dismutase (SOD) was higher in Amruta than that of Ro Agro 4001 under control conditions, whereas the Cd treatment increased significantly the SOD activity in both cultivars with the greater increase in Ro Agro 4001. The fluorescence spectra of phytocystatin showed a lesser change in Ro Agro 4001 under Cd stress than that in Amruta suggesting higher resistance of Ro Agro 4001 to Cd. The higher phytocystatin activity under Cd stress in Ro Agro 4001 compared to Amruta enabled the plants to protect their proteins more efficiently. This resulted in a greater increase of photosynthetic capacity in Ro Agro 4001 than that of Amruta. Thus, the phytocystatin activity may be considered as a physiological parameter for augmenting photosynthesis and growth of mustard under Cd stress., T. S. Per, S. Khan, M. Asgher, B. Bano, N. A. Khan., and Obsahuje bibliografii