Cuttings of Populus cathayana Rehd, originating from three triploid and one diploid populations with the same parents but different gamete origins, were used to examine physiological responses to drought stress and rewatering by exposure to three progressive water regimes. Progressive drought stress significantly decreased the leaf relative water content (RWC), photosynthesis, and chlorophyll fluorescence parameters, and increased the relative electrolyte leakage, malondialdehyde (MDA), free proline (Pro), and antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, in the four populations evaluated. However, compared to the diploid population, triploid populations showed lower relative electrolyte leakage and MDA, higher RWC and Pro content, and more efficient photosynthesis and antioxidant systems under the same water regime. Our data indicated that triploid populations possessed more efficient protective mechanisms than that of diploid population with gradually increasing drought stress. Moreover, some triploid genotypes were less tolerant to water stress than that of diploids due to large intrapopulation overlap., T. Liao, Y. Wang, C. P. Xu, Y. Li, X. Y. Kang., and Obsahuje bibliografii
Globally, water deficit is one of the major constraints in chickpea (Cicer arietinum L.) production due to substantial reduction in photosynthesis. Photorespiration often enhances under stress thereby protecting the photosynthetic apparatus from photoinhibition. Application of bioregulators is an alternative to counter adverse effects of water stress. Thus, in order to analyze the role of bioregulators in protecting the photosynthetic machinery under water stress, we performed an experiment with two contrasting chickpea varieties, i.e., Pusa 362 (Desi type) and Pusa 1108 (Kabuli type). Water deficit stress was imposed at the vegetative stage by withholding water. Just prior to exposure to water stress, plants were pretreated with thiourea (1,000 mg L-1), benzyladenine (40 mg L-1), and thidiazuron (10 mg L-1). Imposed water deficit decreased relative water content (RWC), photosynthetic rate (P N), quantum efficiency of PSII (Fv/Fm), and enhanced lipid peroxidation (LPO). However, bioregulator application maintained higher RWC, P N, Fv/Fm, and lowered LPO under water stress. Expression of Rubisco large subunit gene (RbcL) was low under water stress both in the Kabuli and Desi type. However, bioregulators strongly induced its expression. Although poor expression of two important photorespiratory genes, i.e., glycolate oxidase and glycine decarboxylase H subunit, was observed in Desi chickpea under imposed stress, bioregulators in general and cytokinins in particular strongly induced their expression. This depicts that the application of bioregulators protected the photosynthetic machinery by inducing the expression of RbcL and photorespiratory genes during water deficit stress., T. V. Vineeth, P. Kumar, G. K. Krishna., and Obsahuje seznam literatury
The potential importance of CO2 derived from host tree respiration at night as a substrate for night time CO2 uptake during CAM was investigated in the subtropical and tropical epiphytic vine Hoya carnosa in a subtropical rainforest in north-eastern Taiwan. Individuals were examined within the canopies of host trees in open, exposed situations, as well as in dense forests. Although night time CO2 concentrations were higher near the epiphytic vines at night, relative to those measured during the day, presumably the result of CO2 added to the canopy air by the host tree, no evidence for substantial use of this CO2 was found. In particular, stable carbon isotope ratios of H. carnosa were not substantially lower than those of many other CAM plants, as would be expected if host-respired CO2 were an important source of CO2 for these CAM epiphytes. Furthermore, laboratory measurements of diel CO2 exchange revealed a substantial contribution of daytime CO2 uptake in these vines, which should also result in lower carbon isotope values than those characteristic of a CAM plant lacking daytime CO2 uptake. Overall, we found that host-respired CO2 does not contribute substantially to the carbon budget of this epiphytic CAM plant. This finding does not support the hypothesis that CAM may have evolved in tropical epiphytes in response to diel changes in the CO2 concentrations within the host tree canopy. and C.-C. Hsu ... [et al.].
Net rates of photosynthesis (PN) saturated by irradiance of >500 μmol m-2 s-1 (PAR) significantly decreased in water-stressed potato (Solanum tuberosum L. cv. Kufri Sindhuri) plants. The quantum yield of photochemical energy conversion (Fv/Fm), relative electron transport rate (ETR), and photochemical quenching (Qp) exhibited a parallel decline at high irradiance. A slight decrease in relative water content (RWC) was accompanied by a drastic decline in leaf water potential (Ψw) from -0.2 to -1.0 MPa. Dehydrated leaves showed an increase in the amount of total soluble sugars per unit leaf area which inhibited the photosynthesis in a feedback manner. After rewatering, PN and Fv/Fm were restored to the values of control plants within 24 h, and the restoration was accompanied by a proportionate lowering of content of total soluble sugars in the leaves. and P. S. Basu, Ashoo Sharma, N. P. Sukumaran.
The leaf water potential, gas-exchange parameters and chlorophyll fluorescence were evaluated in five common oil palm (Elaeis guineensis Jacq.) tenera hybrids 913X1988, 1425X2277, 748X1988, 7418X1988, and 690X1988 under water deficit with an aim to identify hybrids which can cope up better under such conditions and understand possible differences among hybrids in relation to the physiological mechanisms triggered by water deficit. Our findings indicate oil palm hybrids 913X1988, 1425X2277, and 7418X1988 maintained higher leaf water potentials than the other hybrids. Hybrids 7418X1988 and 1425X2277 recorded lower stomatal conductance after water deficit, which resulted in higher intrinsic water-use efficiency. The excess light energy produced due to decreased photosynthesis in 7418X1988 and 690X1988 hybrids under water deficit was dissipated as heat by higher nonphotochemical quenching. The maximum efficiency of photosystem II was not affected, even after withholding water for 24 days, suggesting an increased efficiency of photoprotection mechanisms in all these oil palm hybrids., K. Suresh ... [et al.]., and Obsahuje bibliografii
In carob tree (Ceratonia siliqua) radiant energy saturated net photosynthetic rate (PN) during summer was about 10 % of the spring values. This was accompanied by a reduction in stomatal conductance (gs), which only partially explains the strong reduction in PN. Photosynthetic capacity (Pmax) and quantum yield (Φ), both measured under saturating CO2, had the maximum in spring (about 34 μmol m-2 s-1 and 0.08 mol mol-1, respectively) and both decreased in late summer to about 55 % of their spring values. Despite strong decreases in Φ, photoinhibition of photosystem 2 (PS2) was negligible or easily reversible in carob leaves subjected to summer drought, since Fv/Fm, measured in the morning, did not show appreciable changes. The recovery of affected parameters was very rapid after the first rains in late October. The chlorophyll (Chl) alb ratio in the end of the summer was 2.6, a value significantly lower than 3.6 obtained in the spring, suggesting that Chl a was preferentially reduced. and J. C. Ramalho, J. A. Lauriano, M. A. Nunes.
Chlorophyll (Chl) fluorescence is a subtle reflection of primary reactions of photosynthesis. Intricate relationships between fluorescence kinetics and photosynthesis help our understanding of photosynthetic biophysical processes. Chl fluorescence technique is useful as a non-invasive tool in eco-physiological studies, and has extensively been used in assessing plant responses to environmental stress. The review gives a summary of some Chl fluorescence parameters currently used in studies of stress physiology of selected cereal crops, namely water stress, heat stress, salt stress, and chilling stress.
Gas exchanges and leaf water potential (Ψw) of six-years-old trees of fourteen Prunus amygdalus cultivars, grafted on GF-677, were studied in May, when fruits were in active growing period, and in October, after harvesting. The trees were grown in the field under rain fed conditions. Predawn Ψw showed lower water availability in October compared with May. The lowest Ψw values at midday in May increased gradually afterwards, while in October they decreased progressively until night, suggesting a higher difficulty to compensate the water lost by transpiration. However, relative water content (RWC) measured in the morning was similar in both periods, most likely due to some rainfall that occurred in September and first days of October that could be enough to re-hydrate canopy without significantly increasing soil water availability. The highest net photosynthetic rate (PN) was found in both periods early in the morning (08:00-11:00). Reductions in PN from May to October occurred in most cultivars except in José Dias and Ferrastar. In all cultivars a decrease in stomatal conductance (gs) was observed. Photosynthetic capacity (Pmax) did not significantly change from spring to autumn in nine cultivars, revealing a high resistance of photosynthetic machinery of this species to environmental stresses, namely high temperature and drought. Osmotic adjustment was observed in some cultivars, which showed reductions of ca. 23 % (Duro d' Estrada, José Dias) and 15 % (Tuono) in leaf osmotic potential (Ψπ). Such decreases were accompanied by soluble sugars accumulation. The Portuguese cultivar José Dias had a higher photosynthetic performance than the remaining genotypes. and M. C. Matos ... [et al.].
Photoprotective pigments, like those involved in the xanthophyll cycle, help plants avoid oxidative damage caused by excess radiation. This study aims to characterize a spectrum of strategies used to cope with light stress by a diverse group of prairie plants at Cedar Creek Ecosystem Science Reserve (East Bethel, MN). We find that concentrations of photosynthetic and photoprotective pigments are highly correlated with one another and with other physiological traits across species and over time, and tend to be phylogenetically conserved. During a period of water limitation, plots dominated by species with constitutively low pigment concentrations showed a greater decline in mean reflectance and photochemical reflectance index, a reflectance-based indicator of photoprotective physiology, possibly due to alterations in canopy structure. Our findings suggest two contrasting strategies for withstanding light stress: (1) Using photoprotective pigments to dissipate excess energy, and (2) altering canopy structure to minimize absorbance of excess radiation., S. Kothari, J. Cavender-Bares, K. Bitan, A. S. Verhoeven, R. Wang, R. A. Montgomery, J. A. Gamon., and Obsahuje bibliografické odkazy
Field trials under rain-fed conditions at the International Center for Tropical Agriculture (CIAT) in Colombia were conducted to study the comparative leaf photosynthesis, growth, yield, and nutrient use efficiency in two groups of cassava cultivars representing tall (large leaf canopy and shoot biomass) and short (small leaf canopy and shoot biomass) plant types. Using the standard plant density (10,000 plants ha-1), tall cultivars produced higher shoot biomass, larger seasonal leaf area indices (LAIs) and greater final storage root yields than the short cultivars. At six months after planting, yields were similar in both plant types with the short ones tending to form and fill storage roots at a much earlier time in their growth stage. Root yield, shoot and total biomass in all cultivars were significantly correlated with seasonal average LAI. Short cultivars maintained lower than optimal LAI for yield. Seasonal PN, across cultivars, was 12% greater in short types, with maximum values obtained in Brazilian genotypes. This difference in PN was attributed to nonstomatal factors (i.e., anatomical/biochemical mesophyll characteristics). Compared with tall cultivars, short ones had 14 to 24 % greater nutrient use efficiency (NUE) in terms of storage root production. The lesser NUE in tall plants was attributed mainly to more total nutrient uptake than in short cultivars. It was concluded that short-stemmed cultivars are superior in producing dry matter in their storage roots per unit nutrient absorbed, making them advantageous for soil fertility conservation while their yields approach those in tall types. It was recommended that breeding programs should focus on selection for more efficient short- to medium-stemmed genotypes since resource-limited cassava farmers rarely apply agrochemicals nor recycle residual parts of the crop back to the soil. Such improved short types were expected to surpass tall types in yields when grown at higher than standard plant population densities (>10,000 plants ha-1) in order to maximize irradiance interception. Below a certain population density (<10,000 plants ha-1), tall cultivars should be planted. Findings were discussed in relation to cultivation and cropping systems strategies for water and nutrient conservation and use efficiencies under stressful environments as well as under predicted water deficits in the tropics caused by trends in global climate change. Cassava is expected to play a major role in food and biofuel production due to its high photosynthetic capacity and its ability to conserve water as compared to major cereal grain crops. The interdisciplinary/interinstitutions research reported here, including, an associated release of a drought-tolerant, short-stem cultivar that was eagerly accepted by cassava farmers, reflects well on the productivity of the CIAT international research in Cali, Colombia., and M. A. El-Sharkawy, S. M. de Tafur