The paper deals with a model for water freezing in a deformable elastoplastic container. The mathematical problem consists of a system of one parabolic equation for temperature, one integrodifferential equation with a hysteresis operator for local volume increment, and one differential inclusion for the water content. The problem is shown to admit a unique global uniformly bounded weak solution.
The effect of drought stress on energy dissipation and antioxidant enzyme system in two sweet sorghum inbred lines (M-81E and Roma) was investigated. Results showed that the germination indicator increased more in M-81E than that in Roma under rehydration. Under drought stress, both the maximal photochemical efficiency of PSII (Fv/Fm) and oxidoreductive activity (ΔI/I0) of Roma decreased more than those in M-81E. Relative to Fv/Fm, the ΔI/I0 decreased markedly, which indicated that PSI was more sensitive to drought stress than PSII. Increases in the reduction state of QA (1-qp), nonphotochemical quenching (NPQ) and minimal fluorescence yield of the dark-adapted state (F0) were greater in Roma than those in M-81E; meanwhile, the H2O2 content was lower in M-81E than that in Roma. Our results suggested that the photoinhibition might be related to the accumulation of reactive oxygen species (ROS). The antioxidant enzyme system and energy dissipation of M-81E could respectively increase drought tolerance by eliminating ROS and excess energy more efficiently than that of Roma., Y. Y. Guo, S. S. Tian, S. S. Liu, W. Q. Wang, N. Sui., and Obsahuje bibliografii
Field trials with a large group of cassava germplasm were conducted at the seasonally-dry and hot environments in southwest Colombia to investigate photosynthetic characteristics and production under drought conditions. Measurement of net photosynthetic rate (PN), photosynthetic nitrogen use efficiency (PNUE), mesophyll conductance to CO2 diffusion (g m), and phosphoenolpyruvate carboxylase (PEPC) activity of upper canopy leaves were made in the field. All photosynthetic characteristics were significantly correlated with final dry root yield (Yield). Correlations among the photosynthetic traits were also significant. PEPC activity was highly significantly correlated with PN and PNUE, indicating the importance of the enzyme in cassava photosynthesis and productivity. Among a small selected group from the preliminary trial for yield performance, the second year Yield was highly significantly correlated with PN measured on the first year crop. Thus variations in the measured photosynthetic traits are genetically controlled and underpin variations in yield. One short-stemmed cultivar M Col 2215 was selected for high root dry matter content, high harvest index, and tolerance to drought. It was tested under the semi-arid conditions of the west coast of Ecuador; participating farmers evaluated cultivar performance. This cultivar was adopted by farmers and officially released in 1992 under the name Portoviejo 650. and M. A. El-Sharkawy, Y. Lopez, L. M. Bernal.
Almost four decades have passed since the new field of ecosystem simulation sprang into full force as an added tool for a sound research in an ever-advancing scientific front. The enormous advances and new discoveries that recently took place in the field of molecular biology and basic genetics added more effective tools, have strengthened and increased the efficiency of science outputs in various areas, particularly in basic biological sciences. Now, we are entering into a more promising stage in science, i.e. 'post-genomics', where both simulation modelling and molecular biology tools are integral parts of experimental research in agricultural sciences. I briefly review the history of simulation of crop/environment systems in the light of advances in molecular biology, and most importantly the essential role of experimental research in developing and constructing more meaningful and effective models and technologies. Such anticipated technologies are expected to lead into better management of natural resources in relation to crop communities in particular and plant ecosystems in general, that might enhance productivity faster. Emphasis is placed on developing new technologies to improve agricultural productivity under stressful environments and to ensure sustainable economic development. The latter is essential since available natural resources, particularly land and water, are increasingly limiting.
Four case studies are used to examine the relationships of water, ice nucleators and desiccation in the cold survival of invertebrates and the viability of frozen plant material: the freeze intolerant Antarctic springtail Cryptopygus antarcticus (Willem) (Collembola, Isotomidae), the freeze tolerant larvae of the fly Heleomyza borealis Boh. (Diptera: Heleomyzidae), the freeze intolerant Arctic springtail Onychiurus arcticus (Tullberg) (Collembola, Onychiuridae) and meristems of the currant Ribes ciliatum Humb. & Bonpl.(Grossulariaceae) from Mexico. Prevention of ice nucleation, lowering the water content by removal of osmotically active (freezable) water are critical features of the different cold survival strategies of the three species of invertebrates. In C. antarcticus, which desiccates rapidly by losing water via the cuticle to the atmosphere, the number of ice nucleators (and their activity) increases with lowered ambient temperature. During prolonged cold exposure ice nucleators are masked, but re-activated rapidly by water uptake in this species. Larval H. borealis do not readily desiccate and conserve their body water, 20-25% of it being bound (osmotically inactive). Experiments showed that a high proportion (c. 80%) of slowly cooled larvae survived exposure to -60°C. By comparison O. arcticus is able to sustain up to 40% loss of its body water and desiccation lowers its supercooling point to promote over winter survival. Dehydration leading to partial vitrification of currant (R. ciliatum) meristems improves their viability after cryopreservation in liquid nitrogen. From this comparison of four biological systems, it is concluded that the role of water and its activity at sub-zero temperatures are fundamental to the survival of freezing conditions by all the species studied. Although similar features exist in the four systems, no common basic mechanism was found.
The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (PN) in field-grown plants, indicating the importance of selection for high PN. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf PN, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha-1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher PN, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such and as in tropical high altitudes and in low-land sub-tropics, leaf PN is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments.
Archaeology has a great deal of experience with how the misinterpretation of finds creates a false image of the past. The main reason for this is down to ideologically-conditioned stereotypes. The paper descri-bes one such case involving hundreds of thousands of finds of one type of artefact, commonly classified as whetstones, pendants, amulets, etc., from the Chalcolithic up to the Early Middle Ages. The article emphasises that although touchstones from ancient burials had already been identified using an electron microscopy half a century ago, the interpretation of these finds corresponding to the paradigm from the early 19th century remains popular to this day. For the chemical microanalysis of metal traces preserved on the surface of these stone artefacts, samples were selected from Russian, Slovakian, Swedish and Ukrainian sites, from the Hallstatt period up to the Early Middle Ages, with special regard for their previous interpretation history. However, the main aim is to point out the symbolic role of tools used to test the value of precious metals outside the grave context. Finds from wet environments in particular reveal the continuity of the behaviour of European over the millennia, regardless of the current ideology or cult, and the diversity of artefacts that were, and still are, chosen as a medium for votive behaviour. and Archeologie má mnoho zkušeností s tím, jak chybná interpretace nálezů vytváří falešný obraz minulosti. Hlavní důvod spočívá v ideologických stereotypech. Jeden z příkladů nabízí tento článek, jehož tématem jsou stovky tisíc kamenných předmětů obvykle klasifikovaných jako brousky, přívěšky, amulety apod., a to od eneolitu do raného středověku. Ačkoli byly prubířské kameny z dávných hrobů identifikovány za použití elektronového mikroskopu už před půlstoletím, interpretace dotyčných nálezů zůstává poplatná paralokalit, od doby halštatské do raného středověku. Avšak hlavním cílem je vyzdvihnout symbolickou roli nástrojů užívaných k určení hodnoty kovu mimo pohřební kontext. Zejména nálezy z mokrého prostředí odhalují tisíciletou kontinuitu v chování Evropanů, nezávislou na dobové ideologii či kultu, a také šíři škály předmětů, které byly, ba dosud jsou, voleny jako prostředek votivního jednání.
Půdní vlhkost má velký vliv na biodiverzitu lesní vegetace a extrémní situace jako povodně nebo sucho mohou biodiverzitu významně měnit. K těmto přirozeným faktorům se přidává působení člověka, které v dlouhodobém měřítku vedlo k vysoušení krajiny. Lesní mokřady byly odvodňovány kvůli hospodářským výnosům a teprve v současné době se lesní mokřady postupně snažíme obnovovat., Soil moisture has a strong influence on the biodiversity of forest vegetation. Extreme situations such as flooding or drought can significantly change biodiversity. In addition to these natural factors, the human impact has led to long-term desiccation on the landscape scale. Forest wetlands were drained to promote management production. Only recently can efforts to restore forest wetlands be observed., and Radim Hédl.
Na atice sochy čtyř živlů (Oheň, Země, Vzduch, Voda) jako čtyři alegorické ženské figury: žena s ohřívadlem, žena s rohem hojnosti, žena s orlem, žena s nádobou, z níž vytéká voda., Poche, Preiss 1973#, 56, obr. 41., and Vlček 1999#, 179-181.