Photosynthetic and transpiration (E) rates, stomatal conductance, and leaf nitrogen content were surveyed for Myrica gale var. tomentosa, a N2-fixing wetland shrub, Betula platyphylla var. japonica, and Rhododendron japonicum in Ozegahara moor, an oligotrophic moor in Central Japan. Net photosynthetic rate saturated with irradiance (Pmax) of M. gale was 15.2-16.5 μmol(CO2) m-2 s-1, higher than those of the other species throughout the growing season. Pmax was positively correlated with leaf N content among the three species. The large leaf N content in M. gale was due to N2-fixation in root nodules. In a comparison of M. gale in two habitats, Pmax, leaf N content, and root nodule development were larger in the wetter habitat. M. gale showed high E and no midday depression of Pmax even under high irradiance and large vapour pressure deficit between leaves and ambient air on a midsummer day. These traits of photosynthesis and water relations were associated with the dominance of this shrub in wetter sites such as stream sides and hollows. and K, Maeda ... [et al.].
Discriminant analysis is an important method in multivariable statistic analysis to show what type an individual should belong to. Based on actual field photosynthetic value set obtained from our research platform, North East China Transect (NECT), a new approach, developed from the concept and principle of discriminant analysts, was proposed to distinguish C3 and C4 plants. Indices related to plant photosynthetic capacity measured by an LCA4 photosynthesis system were selected to build the discriminant model which is based on four related parameters: net photosynthetic rate, transpiration rate, stomatal conductance, and difference in temperature between leaf surface and atmosphere. Compared with other approaches, the present one is fast, straightforward, and efficient. and H. P. Tang, X. S. Zhang.
Leaf anatomy and eco-physiology of Elymus repens, a temperate loess grassland species, were determined after seven years of exposure to 700 μmol (CO2) mol-1 (EC). EC treatment resulted in significant reduction of stomatal density on both surfaces of couch-grass leaves. Thickness of leaves and that of the sclerenchyma tissues between the vessels and the adaxial surfaces, the area of vascular bundle, and the volumes of phloem and tracheary increased at EC while abaxial epidermis and the sclerenchyma layer between the vessel and the abaxial surface were thicker at ambient CO2 concentration (AC). Stomatal conductance and transpiration rates were lower in EC, while net CO2 assimilation rate considerably increased at EC exposure. Contents of soluble sugars and starch were higher in EC-treated couch-grass leaves than in plants grown at AC. and A. I. Engloner ... [et al.].
Twenty-five genotypes of early CIMMYT hexaploid wheat were screened for salt tolerance in a glasshouse experiment using photosynthetic capacity and water relation parameters as selection criteria. Under salt stress (150 mM NaCl) the genotypes Frontana, Norin-10, Mayo-54, Noreste-66, and Yaktana-54 excelled all other lines in shoot dry mass, and Na(20)TPP, Penjamo-62, Inia-66, Frontana, Siete Cerros, and Jaral-66 in grain yield per plant in both absolute and relative (percent of control) terms. Although net photosynthetic rate (PN) declined in all genotypes due to salt stress, it was not helpful in discriminating among genotypes according to salt tolerance. Similarly, no positive relationships of salt tolerance of the genotypes with stomatal conductance, leaf water potential, or turgor pressure were found. Every genotype used its own specific mechanism to tolerate salt stress. However, a large amount of variation in salt tolerance observed in 25 early CIMMYT wheat genotypes can be of considerable practical value for improving salt tolerance in the existing commercial hexaploid wheats. and M. Ashraf, M. Shahbaz.
Photosynthetic parameters including net photosynthetic rate (P N), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (g s) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The P N declined rapidly with the decrease of temperature in all studied plants. St showed the maximum P N of 11.9 μmol m-2 s-1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of P N. St showed minimum E (0.1 mmol m-2 s-1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the g s also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum g s of 0.07 mol m-2 s-1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to -4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments., S. M. Gupta, A. Agarwal, B. Dev, K. Kumar, O. Prakash, M. C. Arya, M. Nasim., and Obsahuje seznam literatury
Biomass, leaf water potential (Ψl), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), leaf to air temperature difference (Tdiff), and instantaneous water use efficiency (WUE) were measured in the seedlings of Dalbergia sissoo Roxb. grown under irrigation of 20 (W1), 14 (W2), 10 (W3), and 8 (W4) mm. Treatments were maintained by re-irrigation when water content of the soil reached 7.4% in W1, 5.6% in W2, 4.3% in W3, and 3.2% in W4. Seedlings in a control (W5) were left without irrigation after maintaining the soil field capacity (10.7%). Seedlings of W1 had highest biomass that was one tenth in W5. Biomass allocation was highest in leaf in W2 and in root in W4 and W5 treatments. Difference between predawn leaf water potential (ΨPd) and midday (Ψmid) increased with soil water stress and with vapour pressure deficit (VPD) in April and May slowing down the recovery in plant leaf water status after transpiration loss. PN, E, and gs declined and Tdiff increased from W1 to W5. Their values were highly significant in April and May for the severely stressed seedlings of W4 and W5. PN increased from 08:00 to 10:00 and E increased until 13:00 within the day for most of the seedlings whereas gs decreased throughout the day from 08:00 to 17:00. PN and E were highest in March but their values were low in January, February, April, and May. Large variations in physiological variables to air temperature, photosynthetically active radiation, and vapour pressure deficit (VPD) indicated greater sensitivity of the species to environmental factors. WUE increased from W1 to W2 but decreased drastically at high water stress particularly during hot summer showing a kind of adaptation in D. sissoo to water stress. However, low biomass and reduced physiological functions at <50% of soil field capacity suggest that this species does not produce significant biomass at severe soil water stress or drought of a prolonged period. and B. Singh, G. Singh.
Changes in leaf growth, net photosynthetic rate (PN), incorporation pattern of photosynthetically fixed 14CO2 in leaves 1-4 from top, roots, and rhizome, and in essential oil and curcumin contents were studied in turmeric plants grown in nutrient solution at boron (B) concentrations of 0 and 0.5 g m-3. B deficiency resulted in decrease in leaf area, fresh and dry mass, chlorophyll (Chl) content, and PN and total 14CO2 incorporated at all leaf positions, the maximum effect being in young growing leaves. The incorporation of 14CO2 declined with leaf position being maximal in the youngest leaf. B deficiency resulted in reduced accumulation of sugars, amino acids, and organic acids at all leaf positions. Translocation of the metabolites towards rhizome and roots decreased. In rhizome, the amount of amino acids increased but content of organic acids did not show any change, whereas in roots there was decrease in contents of these metabolites as a result of B deficiency. Photoassimilate partitioning to essential oil in leaf and to curcumin in rhizome decreased. Although the curcumin content of rhizome increased due to B deficiency, the overall rhizome yield and curcumin yield decreased. The influence of B deficiency on leaf area, fresh and dry masses, CO2 exchange rate, oil content, and rhizome and curcumin yields can be ascribed to reduced photosynthate formation and translocation. and Deeksha Dixit, N. K. Srivastava, S. Sharma.
An open-top chamber experiment was carried out from April through October 2006 to examine the effects of elevated (80 nmol mol-1) atmospheric O3 on Ginkgo biloba (4-years-old) in urban area. The air with ambient O3 (AA, ≈ 45 nmol mol-1) was used as control. The leaf mass and size, leaf area index, net photosynthetic rate (PN), apparent quantum yield, transpiration rate, and stomatal conductance were decreased by elevated O3 (EO) exposure. Visible foliar injury, which is light-brown flecks, was observed in the EO OTCs after 90 d of exposure. Carboxylation efficiency (ΦCO2) and photorespiration and dark respiration rates were enhanced by EO exposure in the first half of the season, but all of them turned to be lower than those of the AA control at the end of experiment. Stomata limitation of photosynthesis was significantly higher than control in the whole season (p<0.05). Chlorophyll (Chl) content was lower in EO variant than in the control and the difference became more and more apparent through the season. Hence the decrease in PN of G. biloba exposed to EO was the result of both stomatal and non-stomatal limitations. In the early season, the inhibition of photosynthesis was mainly caused by the stomatal limitation, and the earliest response was photoprotective down-regulation of photosynthesis but not photodamage. However, at the end of the season, the non-stomatal limiting factors such as decrease in Chl content, decrease in ΦCO2, and anti-oxidative enzyme activity became more important. and X.-Y. He ... [et al.].
Photosynthesis, chlorophyll (Chl) a fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida Bge.), subjected to exogenous L-glutamic acid (GLA) (200 mg l-1, 400 mg l-1, and 800 mg l-1) that possibly affect secondary metabolic regulation, were measured. The results indicated that photosynthetic and fluorescence characteristics of hawthorn exhibited positive responses to the application of GLA. Different concentrations of GLA caused an increase in Chl content, net photosynthetic rate
(PN) and stomatal conductance (g s) as well as transpiration rate (E), and improved the carboxylation efficiency (CE), apparent quantum yield (AQY) and maximum carboxylation velocity of Rubisco (Vcmax). Application of GLA could also enhance the maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PSII (Fv/F0), the maximal quantum yield of PSII (Fv/Fm), the probability that an absorbed photon will move an electron into the electron transport chain beyond QA (ΦEo) as well as the performance index on absorption basis (PIABS), but decreased the intercellular CO2 concentration
(Ci) and the minimal fluorescence (F0). Application of GLA also induced an increase in nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) activities, and increased the soluble protein content, leaf nitrogen (N) content and N accumulation in leaves as well as the plant biomass. However, the effects were different among different concentrations of GLA, and 800 mg l-1 GLA was better. This finding suggested that application of GLA is recommended to improve the photosynthetic capacity by increasing the light energy conversion and CO2 transfer as well as the photochemical efficiency of PSII, and enhanced the nitrogen metabolism and growth and development of plants. and C. YU ... [et al.].
Net photosynthetic rate, stomatal conductance, ratio of sub-stomatal to atmospheric CO2 concentration, transpiration rate, and water use efficiency changed significantly and assimilation capacity dropped continuously along the salinization and alkalinization process in the afternoon. Assimilation capacity of L. chinensis leaf correlated negatively with the degree of salinization and alkalinization. The photosynthetic characteristics of L. chinensis determined its community formation. By changing the ratio of chlorophyll a/b in leaves and accumulating soluble saccharides in rhizome, L. chinensis could adapt to the saline-alkali condition. and L. X. Shi, J. X. Guo.