During a 5-20 d growth at moderate salinity (7 dS m‘i) in rice seedlings of salt sensitive cultivars Ratna and Jaya a larger decrease in chlorophyll (Chl) a and b contents was observed than in tolerant cvs. CSR-1 and CSR-3. At higher salinity (14 dS m'i) about 40 % declines in both whole chain electron transport and photosystem (PS) 2 activities were observed in the tolerant cvs. and about 62 to 67 % declines in the sensitive ones. No apparent change in PSI activity was observed due to salinization in the both sets of cultivars. Higher rate of Hill reaction was observed in chloroplasts ffom salt stressed seedlings of tolerant cultivars whereas inhibition in this activity was found in the sensitive ones. Chloroplasts isolated from stressed seedlings of sensitive cultivars showed about 31 % reduction in fluorescence emission at 685 nm as well as a major decrease in absorption with shifts in peaks in the visible region of spectrum. Thus salt sensitivity in rice is associated with decreased contents of Chls and carotenoids, PS2 and Hill reaction activities, and fluorescence emission.
Radish (Raphanus sativus L.) and carrot (Daucus carota L.), plants with underground storage organs grown in the field, were exposed to either ambient (UVA) or 20 % UV-B (UVE) enhanced solar radiation till their root yield stage. In radish, UVE produced a significant increase in shoot and root fresh mass (FM), increase in the contents of chlorophyll, carotenoids, flavonoids, and total proteins per unit FM, Hill reaction rate, and root yield. In contrast, carrot responded negatively to UVE showing a loss in the above parameters. and S. M. J. Nithia, N. Shanthi, G. Kulandaivelu.
Area and fresh and dry masses of flag leaf show two phases of development during grain filling in Triticum aestivum. The initial large increase in leaf size is mainly due to water intake. Contents of chlorophylls and carotenoids, reducing sugars, and sucrose, Hill reaction rate, and photosynthetic activity increased during leaf growth, but a noticeable decline in these parameters followed throughout leaf senescence. The maximum accumulation of polysaccharides and proteins occurred at the beginning of grain set, but a continuous decline in their absolute values was manifested during grain filling. Grain priming with indol-3-yl acetic acid (IAA) at 25 mg kg-1 stimulated the flag leaf growth, namely its fresh and dry masses and its area. Furthermore, the stimulatory effect was mainly due to the increase in the pigment formation that in turn increased the photosynthetic activity of flag leaf during grain filling. On the other hand, the highest dose of IAA (50 mg kg-1) attenuated the growth and physiological activity of flag leaf through its inhibitory action on leaf fresh and dry masses, leaf area, pigments, saccharides and protein formation, as well as its effect on 14CO2 assimilation.
Effect of three Zn2+ concentrations, i.e. 0.075 (cl), 7.50 (c2) and 37.5 (c3) jiM, on rice seedlings was studied at three stages, i.e. 1, 14 and 21 d after transplantation. Typical deficiency symptoms were observed in both solution and sand cultures of cl and c2, but the effects were more pronounced in the solution culture. The c3 concentration was toxic. There was marked reduction in growth, chlorophyll (Chl) contents (particularly Chl b), Hill reaction activity, photophosphorylation rate (particularly non-cyclic photophosphorylation), thylakoid phosphorylation, and i'‘C02-fixation at the cl concentration. However, a similar reduction was also observed in thylakoid phosphorylation at the c3 concentration. Hence the optimum zinc concentration in the nutrient medium lied between c2 and c3 Zn2+. By regression the theoretical optimum Zn concentration was calculated as 19.20 pM (1.28 mg kg'i) Zn2+. Partitioning of ^'^C-photosynthates indicated reduced allocation to sugar and starch fractions and increased fřee amino acids concentration at the cl concentration and vice-versa at c2 and c3.
Effect of drought on the mechanisms of energy dissipation was evaluated in two-month-old Arachis hypogaea cvs. 57-422, 73-30, and GC 8-35. Plants were submitted to three treatments: control (C), mild water stress (S1), and severe water stress (S2). Photosynthetic performance was evaluated as the Hill and Mehler reactions. These activities were correlated with the contents of the low and high potential forms of cytochrome (cyt) b 559, plastoquinone, cyt b 563, and cyt f. Additionally, the patterns of carotenoids and chlorophylls (Chls), as well as the alterations of Chl a fluorescence parameters were studied. Under mild water stress the regulatory mechanism at the antennae level was effective for 57-422 and GC 8-35, while in the cv. 73-30 an overcharge of photosynthetic apparatus occurred. Relative to this cv., under S1 the stability of carotene and the dissipative cycle around photosystem (PS) 2 became an important factor for the effective protection of the PS2 reaction centres. The cyclic electron flow around PS1 was important for energy dissipation under S1 only for the cvs. 57-422 and 73-30. and J. A. Lauriano ... [et al.].
The activity of photosystems (PS) 1 and 2, together with the content and ratio of photosynthetic pigments, were measured in three inbred lines and two F1 hybrids of maize (Zea mays L.), grown in either optimum or low temperature (LT) conditions. The ability of chilling-stressed plants to deal with the negative effects of long-term exposure to LT and to recover the efficiency of photosynthetic apparatus after their return to optimum temperatures was examined during spring and autumn seasons. The aim was to analyse the possible differences between the rapid and gradual onset of LT on the response of young maize plants to chilling stress. The distinctive superiority of hybrids over their parental lines, found during the exposure of maize plants to LT, was not always retained after the return of chilling-stressed plants to optimum growth conditions. The response of individual genotypes to chilling stress, as well as their ability to recover the photosynthetic efficiency from the cold-induced damage, strongly depended also on the duration and the rapidity of the onset of LT. and D. Holá ... [et al.].
Boron deficiency induced a dramatic inhibition in sunflower plant growth, shown by a reduction in dry mass of roots and shoots of plants grown for 10 d in nutrient solution supplied with 0.02 µM B. This low B supply facilitated the appearance of brown purple pigmentation on the plant leaves over the entire growth period. Compared to B-sufficient (BS) leaves, leakage from B-deficient (BD) leaves was 20 fold higher for potassium, 38 fold for sucrose, and 6 fold for phenolic compounds. High level of membrane peroxidation was detected by measuring peroxidase activities as well as peroxidative products in BD sunflower plants. Soluble and bound peroxidase activities measured in BD thylakoid membranes were accelerated two fold compared to those detected in BS-membranes. No detectable change in soluble peroxidase activity in roots whereas a 4 fold stimulation in bound peroxidase activity was detected. Thylakoid membranes subjected to low B supply showed enhancement in lipoxygenase activity and malondialdehyde (MDA) content in parallel with 40 and 30 % decrease of linoleic and linolenic acid contents (related to total unsaturated fatty acids). A slower rate of Hill reaction activity (40 %) and a suppressed flow of electron transfer of the whole chain (30 %) were detected in BD thylakoid membranes. This reduction was accompanied with a decline in the activity of photosystem 2 shown by a diminished rate of oxygen evolution (42 %) coupled with a quenching (27.5 %) in chlorophyll a fluorescence emission spectra at 685 nm (F685). Thus B is an important element for membrane maintenance, protection, and function by minimizing or limiting production of free oxygen radicals in thylakoid membranes of sunflower leaves.
The effect of three different concentrations of amitrole (AM), a bleaching herbicide affecting carotenogenesis, on chloroplast ultrastructure, photosynthetic pigment contents, and photochemical activity was studied in two maize genotypes differing in photosynthetic characteristics. The content of photosynthetic pigments in leaves of plants treated with low (20 μM) AM concentration was similar to control plants and no damaging effect of the herbicide on the ultrastructure of either mesophyll (MC) or bundle-sheath (BSC) cell chloroplasts was observed. Higher (60 and 120 μM) concentrations of AM caused a significant decrease in the content of carotenoids (especially xanthophylls), which was followed by photooxidative destruction of chlorophylls and some alterations of chloroplast ultrastructure. MC chloroplasts appeared more sensitive to the damaging effect of AM compared to BSC chloroplasts. A significant decrease in the amount of both granal and intergranal thylakoids in MC chloroplasts was observed with the increasing concentration of AM. As regards BSC chloroplasts, rapid decrease in the volume density of starch inclusions was found in plants treated with higher concentrations of AM. When 120 μM AM was used, both MC and BSC chloroplasts contained just a few thylakoid membranes that were strongly altered. The changes in the ultrastructure of MC chloroplasts were accompanied by the changes in their photochemical activity. The formation of chloroplast protrusions after treatment of plants with AM as well as in control plants was also observed. and R. Pechová ... [et al.].