During a 5-20 d growth at moderate salinity (7 dS m‘i) in rice seedlings of salt sensitive cultivars Ratna and Jaya a larger decrease in chlorophyll (Chl) a and b contents was observed than in tolerant cvs. CSR-1 and CSR-3. At higher salinity (14 dS m'i) about 40 % declines in both whole chain electron transport and photosystem (PS) 2 activities were observed in the tolerant cvs. and about 62 to 67 % declines in the sensitive ones. No apparent change in PSI activity was observed due to salinization in the both sets of cultivars. Higher rate of Hill reaction was observed in chloroplasts ffom salt stressed seedlings of tolerant cultivars whereas inhibition in this activity was found in the sensitive ones. Chloroplasts isolated from stressed seedlings of sensitive cultivars showed about 31 % reduction in fluorescence emission at 685 nm as well as a major decrease in absorption with shifts in peaks in the visible region of spectrum. Thus salt sensitivity in rice is associated with decreased contents of Chls and carotenoids, PS2 and Hill reaction activities, and fluorescence emission.
To understand the physiology of rice under seawater salinity, potted rice plants were irrigated with different concentrations of Japan seawater (electrical conductivity 0.9, 5.7, 11.5, or 21.5 mS cm-1) from 10 d after transplanting (DAT) to 35 DAT, and from 75 to 100 DAT. Seawater salinity decreased the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, leaf water and osmotic potentials, and relative water content, and increased leaf temperature. The contents of chlorophylls, carotenoids, and total sugars significantly decreased in the leaves but content of non-reducing sugars decreased only slightly. With increasing salinity the Na+ concentration increased, while Ca2+, Mn2+, and K+ concentrations decreased. Salinity decreased the contents of sugars and proteins, dry mass, and rate of dry mater accumulation in developing grains. and N. Sultana, T. Ikeda, M. A. Kashem.
Activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in heated crude extracts from seedlings of the rice cultivars Hitomebore and IR28 was investigated in the presence of proline and betaine. Both solutes retarded the inactivation of the enzyme extracted from the leaves of both cultivars at temperature-stress from 35 to 45 °C. At 50 °C, however, betaine was effective in both cultivars. Stabilization of RuBPCO activity was independent of the added solute from 1 to 2 M concentration. and M. L. Dionisio-Sese, M. Shono, S. Tobita.
To investigate into the relationship between two Rubisco activase (RCA) isoforms and photosynthetic rate, a set of enzyme-linked immunosorbent assay (ELISA) were developed for accurate quantification of two RCA polypeptides based on two specific monoclonal antibodies against different RCA isoforms. The results showed that content of RCA small isoform (RCAS) was 5-fold more than that of RCA large isoform (RCAL) content in all leaves and the RCAL/RCAS ratio reached maximum in the leaf with the highest photosynthetic rate. Although the difference in two RCA polypeptides accumulation in leaves was caused by different transcript level of two isoforms, the decrease of RCAL/RCAS ratio during leaf aging was not attributed to transcriptional regulation. The leaves with higher photosynthetic capacity exhibited higher RCAL/RCAS ratio and the decrease in photosynthetic rate and Rubisco activation state highly correlated with the decline of RCAL/RCAS ratio during leaf aging. Our results suggest that there is a posttranscriptional mechanism regulating the RCAL/RCAS ratio, which may play as a regulator modulating photosynthetic capacity during leaf aging in rice plant. and D. Wang ... [et al.].
The effect of heat stress (35 to 50 °C) on photosynthesis was investigated in heat tolerant (N 22) and heat sensitive (IR 8) cultivars of rice {Oryza sativa L.). The net photosynthetic rate showed greater thermal stability in N 22 than in IR 8. The relative dechne of the rate of whole chain electron transport and photosystem 2 (PS2) activity was more pronounced in IR 8 than N 22. In both cultivars photosystem (PSI) activity was stimulated by thermal treatment. Chlorophyll (Chl) a fluorescence transient arising ffom PS2 showed inhibition in both cultivars at 45 and 50 °C. Maximum fluorescence decreased more in IR 8 than in N 22 by high temperature treatment.