In the mutant CC-1047 of Chlamydomonas reinhardtii, LDS-PAGE showed that the chlorophyll-protein complex I (CPI) is almost absent. The mutant could not grow in a culture medium without organic carbon source while the wild type (WT) C. reinhardtii grew quickly. When an organic carbon source was added into the culture medium, the mutant grew almost as well as WT. The rate of photosystem 1 (PS1) electron transport (DCPIP→MV) and the rate of whole chain electron transport (H2O→MV) of chloroplasts of the CC-1047 mutant were both lower than those of WT. The photophosphorylation activity, photosynthetic O2 evolution rate, and rate of NADP+ photoreduction of CC-1047 were also much lower than the activities of WT. There were some differences in ATPase activity between the mutant and WT. Two different activation ways were used to activate the latent ATPase using methanol and dithiothreitol (DTT) as activation substrate. More methanol and DTT were required for the mutant than WT to obtain the maximum activity. Thus the photosynthetic apparatus could not operate normally when CPI was absent because of the abnormal PS1 electron transport. Meanwhile, the other adjacent complexes of the thylakoid membrane, for example, ATP synthase complex, were slightly affected. and Qing-Xiu Tang, Zhang-Lin Ni, Jia-Mian Wei.
Effect of three Zn2+ concentrations, i.e. 0.075 (cl), 7.50 (c2) and 37.5 (c3) jiM, on rice seedlings was studied at three stages, i.e. 1, 14 and 21 d after transplantation. Typical deficiency symptoms were observed in both solution and sand cultures of cl and c2, but the effects were more pronounced in the solution culture. The c3 concentration was toxic. There was marked reduction in growth, chlorophyll (Chl) contents (particularly Chl b), Hill reaction activity, photophosphorylation rate (particularly non-cyclic photophosphorylation), thylakoid phosphorylation, and i'‘C02-fixation at the cl concentration. However, a similar reduction was also observed in thylakoid phosphorylation at the c3 concentration. Hence the optimum zinc concentration in the nutrient medium lied between c2 and c3 Zn2+. By regression the theoretical optimum Zn concentration was calculated as 19.20 pM (1.28 mg kg'i) Zn2+. Partitioning of ^'^C-photosynthates indicated reduced allocation to sugar and starch fractions and increased fřee amino acids concentration at the cl concentration and vice-versa at c2 and c3.