The effects of chilling treatment (4 °C) under low irradiance, LI (100 μmol m-2 s-1) and in the dark on subsequent recovery of photosynthesis in chilling-sensitive sweet pepper leaves were investigated by comparing the ratio of quantum yields of photosystem (PS) 2 and CO2 assimilation, ΦPS2/ΦCO2, measured in normal air (21 % O2, NA) and low O2-air (2% O2, LOA), and by analyzing chlorophyll (Chl) a fluorescence parameters. Chilling treatment in the dark had little effect on Fv/Fm and ΦPS2/ΦCO2, but it caused the decrease of net photosynthetic rate (PN) under saturating irradiance after 6-h chilling treatment, indicating that short-term chilling alone did not induce PS2 photoinhibition. Furthermore, photorespiration and Mehler reaction also did not obviously change during subsequent recovery after chilling stress in the dark. During chilling treatment under LI, there were obvious changes in Fv/Fm and ΦPS2/ΦCO2, determined in NA or LOA. Fv/Fm could recover fully in 4 h at 25 °C, and ΦPS2/ΦCO2 increased at the end of the treatment, as determined in both NA and LOA. During subsequent recovery, ΦPS2/ΦCO2 in LOA decreased faster than in NA. Thus the Mehler reaction might play an important role during chilling treatment under LI, and photorespiration was an important process during the subsequent recovery. The recovery of PN under saturating irradiance determined in NA and LOA took about 50 h, implying that there were some factors besides CO2 assimilation limiting the recovery of photosynthesis. From the progress of reduced P700 and the increase of the Mehler reaction during chilling under LI we propose that active oxygen species were the factors inducing PS1 photoinhibition, which prevented the recovery of photosynthesis in optimal conditions because of the slow recovery of the oxidizable P700. and X.-G. Li ... [et al.].
Effect of drought on the mechanisms of energy dissipation was evaluated in two-month-old Arachis hypogaea cvs. 57-422, 73-30, and GC 8-35. Plants were submitted to three treatments: control (C), mild water stress (S1), and severe water stress (S2). Photosynthetic performance was evaluated as the Hill and Mehler reactions. These activities were correlated with the contents of the low and high potential forms of cytochrome (cyt) b 559, plastoquinone, cyt b 563, and cyt f. Additionally, the patterns of carotenoids and chlorophylls (Chls), as well as the alterations of Chl a fluorescence parameters were studied. Under mild water stress the regulatory mechanism at the antennae level was effective for 57-422 and GC 8-35, while in the cv. 73-30 an overcharge of photosynthetic apparatus occurred. Relative to this cv., under S1 the stability of carotene and the dissipative cycle around photosystem (PS) 2 became an important factor for the effective protection of the PS2 reaction centres. The cyclic electron flow around PS1 was important for energy dissipation under S1 only for the cvs. 57-422 and 73-30. and J. A. Lauriano ... [et al.].
In the course of dehydration, the gas exchange and chlorophyll (Chl) fluorescence were measured under irradiance of 800 μmol m-2 s-1 in detached apple leaves, and the production of active oxygen species (AOS), hydrogen peroxide (H2O2), superoxide (O2-), hydroxyl radical (-OH), and singlet oxygen (1O2), were determined. Leaf net photosynthetic rate (PN) was limited by stomatal and non-stomatal factors at slight (2-3 h dehydration) and moderate (4-5 h dehydration) water deficiency, respectively. Photoinhibition occurred after 3-h dehydration, which was defined by the decrease of photosystem 2 (PS2) non-cyclic electron transport (P-rate). After 2-h dehydration, an obvious rise in H2O2 production was found as a result of photorespiration rise. If photorespiration was inhibited by sodium bisulfite (NaHSO3), the rate of post-irradiation transient increase in Chl fluorescence (Rfp) was enhanced in parallel with a slight decline in P-rate and with an increase in Mehler reaction. At 3-h dehydration, leaf P-rate decrease could be blocked by glycine (Gly) or methyl viologen (MV) pre-treatment, and MV was more effective than Gly at moderate drought time. AOS (H2O2 and O2-), prior to photoinhibition produced from photorespiration and Mehler reaction in detached apple leaves at slight water deficiency, were important in dissipating photon energy which was excess to the demand of CO2 assimilation. So photoinhibition could be effectively prevented by the way of AOS production. and H. S. Jia, Y. Q. Han, D. Q. Li.
Primary leaves of bean (Phaseolus vulgaris L.) seedlings cultivated for 14 days in a growth chamber on complete (control) and phosphate deficient (-P) Knop liquid medium were used for measurements. The -P leaves were smaller and showed an increased specific leaf area (SLA). Their inorganic phosphate (Pi) concentration was considerably lowered. They did not show any significant changes in chlorophyll (Chl) (a + b) concentration and in their net CO2 assimilation rate when it was estimated under the conditions close to those of the seedlings growth. Light response curves of photosynthetic net O2 evolution (P NO2) of the leaves for the irradiation range up to 500 μmol(photon) m-2 s-1 were determined, using the leaf-disc Clark oxygen electrode. The measurements were taken under high CO2 concentration of about 1 % and O2 concentrations of 21 % or lowered to about 3 % at the beginning of measurement. The results obtained at 21 % O2 and the irradiations close to or higher than those used during the seedlings growth revealed the phosphorus stress suppressive effect on the leaf net O2 evolution, however, no such effect was observed at lower irradiations. Other estimated parameters of P NO2 such as: apparent quantum requirement (QRA) and light compensation point (LCP) for the control and -P leaves were similar. However, with a high irradiation and lowered O2 concentration the rate of P NO2 for the -P leaves was markedly higher than that for the control, in relation to both the leaf area and leaf fresh mass. This difference also disappeared at low irradiations, but the estimated reduced QRA values indicate, under those conditions, the increased yield of photosynthetic light reaction, especially in the -P leaves. The presented results confirm the suggestion that during the initial phase of insufficient phosphate feeding the acclimations in the light phase of photosynthesis, both structural and functional appear. They correspond, probably, to the increased energy costs of carbon assimilation under phosphorus stress, e.g. connected with raised difficulties in phosphate uptake and turnover and enhanced photorespiration. Under the experimental conditions especially advantageous for the dark phase of photosynthesis (saturating CO2 and PAR, low O2 concentration), those acclimations may be manifested as an enhancement of photosynthetic net O2 evolution. and B. Kozłowska-Szerenos, A. Jarosz, S. Maleszewski.