The short-term acclimation (10-d) of Norway spruce [Picea abies (L.) Karst] to elevated CO2 concentration (EC) in combination with low irradiance (100 μmol m-2 s-1) resulted in stimulation of CO2 assimilation (by 61 %), increased total chlorophyll (Chl) content (by 17 %), significantly higher photosystem 2 (PS2) photochemical efficiency (Fv/Fm; by 4 %), and reduced demand on non-radiative dissipation of absorbed excitation energy corresponding with enhanced capacity of photon utilisation within PS2. On the other hand, at high cultivation irradiance (1 200 μmol m-2 s-1) both Norway spruce and spring barley (Hordeum vulgare L. cv. Akcent) responded to EC by reduced photosynthetic capacity and prolonged inhibition of Fv/Fm accompanied with enhanced non-radiative dissipation of absorbed photon energy. Norway spruce needles revealed the expressive retention of zeaxanthin and antheraxanthin (Z+A) in darkness and higher violaxanthin (V) convertibility (yielding even 95 %) under all cultivation regimes in comparison with barley plants. In addition, the non-photochemical quenching of minimum Chl a fluorescence (SV0), expressing the extent of non-radiative dissipation of absorbed photon energy within light-harvesting complexes (LHCs), linearly correlated with V conversion to Z+A very well in spruce, but not in barley plants. Finally, a key role of the Z+A-mediated non-radiative dissipation within LHCs in acclimation of spruce photosynthetic apparatus to high irradiance alone and in combination with EC was documented by extremely high SV0 values, fast induction of non-radiative dissipation of absorbed photon energy, and its stability in darkness. and I. Kurasová ... [et al.].
The photosynthetic pigments and photochemical efficiency of photosystem 2 (PS2) were studied in four constitutive species (Achillea millefolium L., Festuca pseudovina Hack. ex Wiesb., Potentilla arenaria Borkh., and Thymus degenianus Lyka) of a semiarid grassland in South-eastern Hungary. Every species displayed typical sun-adapted traits and substantial plasticity in the composition and functioning of the photosynthetic apparatus. The contents of chlorophylls (Chls) and carotenoids (Cars) on a dry matter basis declined from May to July, however, the amount of total Cars on a Chl basis increased. This increase was the largest in Potentilla (48 %) and the smallest in Achillea (14 %). The pool of xanthophylls (VAZ) was between 25 % and 45 % of the total Car content and was larger in July than in May. The content of β-carotene increased by July, but lutein content did not change significantly. The Chl fluorescence ratio Fv/Fm was reduced by 3-10 % at noon, reflecting the down-regulation of PS2 in the period of high irradiance and high temperature. The occurrence of minimal values of ΔF/Fm' showed close correlation to the de-epoxidation rate of violaxanthin. Hence in natural habitats these species developed a considerable capacity to dissipate excess excitation energy in the summer period in their photosynthetic apparatus through the xanthophyll cycle pool and a related photoprotective mechanism, when the photochemical utilization of photon energy was down-regulated. and S. Veres ... [et al.]
The photosynthetic pigments of twigs in five tree and shrub species possessing chlorenchyma under a well developed, stomata-less, and highly photon absorptive periderm were analysed and compared to those of the corresponding canopy leaves. We asked whether the unavoidable shade acclimation of corticular chlorenchyma results in photosynthetic pigment complements typically found in shade leaves. As expected, chlorophyll (Chl) a/b ratios in twigs were consistently low. However, carotenoid (Car) analysis did not confirm the initial hypothesis, since twigs generally contained increased Chl-based pool sizes of the xanthophyll cycle components. The contents of photo-selective neoxanthin and lutein were high as well. Yet, β-carotene content was extraordinarily low. In addition, twigs retained high pre-dawn ratios of the deepoxidized antheraxanthin and zeaxanthin, although environmental conditions were not pre-disposing for such a state. The unexpected Car composition allows the conclusion that other micro-environmental conditions within twigs (hypoxia, increased red to blue photon ratios, and extremely high CO2 concentrations) are more important than shade in shaping the Car profiles. and E. Levizou, Y. Petropoulou, Y. Manetas.
Non-photochemical quenching of chlorophyll fluorescence (qN) and its three components (qNf, qNm, and qNs) in the flag leaves of wheat grown in the field were studied by a fluorometer PAM-2000 on clear days. The diurnal variation patterns of qN in just fully extended (JFEL) and aging leaves (AL) were similar, but qNm declined markedly in JFEL while it remained at a relatively high level in AL under strong sunlight at noon. Furthermore, at midday qNf was higher than qNs in JFEL, but much lower in AL. The results show the relative contributions of different mechanisms in preventing the photosynthetic apparatus from photodamage change during leaf development. and S.-S. Hong ... [et al.].
With japonica rice 98-08, indica hybrids Shanyou 63, Gangyou 881, and X07S/Zihui 100, and sub-species hybrid Peiai 64S/9311 as materials, chlorophyll (Chl) content, Chl a fluorescence parameters, and membrane lipid peroxidation in flag leaf were measured at late developmental stages under natural conditions. Fv/Fm, qP, ΦPS2, and electron transport rate gradually decreased while qN increased conversely. Excessive photon energy led to the accumulation of active oxygen (O2-), H2O, malonyldialdehyde, and products of membrane lipid peroxidation, and resulted in reduced Chl content and early ageing subsequent to the photooxidation during flag leaf senescence. There was obvious diversification of these parameters among rice cultivars. In comparison with japonica cv. 98-08 (tolerant to photooxidation), Fv/Fm decreased in indica cv. Shanyou 63 (susceptible to photooxidation) with greater accumulation of active oxygen and a sharp drop in Chl content, which resulted in "yellowish" early ageing, and affected the filling and setting of rice grains. The mechanism for premature ageing in indica rice was related to irradiance and temperature at filling stages. On a sunny day at above 25 °C, the reaction centre of photosystem 2 (PS2) exhibited a dynamic change on reversible inactivation. Under the intense irradiance at noon, PS2 function in indica rice exhibited obvious down-regulation and photoinhibition. Under intense irradiance with lowered temperatures, PS2 resulted in photo-damage and early ageing, related to the degradation of PS2-D1 protein and the inhibition of endogenous protection systems such as the xanthophyll cycle and enzymes scavenging active oxygen. Hence for high-yield breeding, based on a good plant-type and utilising heterosis and tolerance of photooxidation, the selection of japonica rice or a sterile line with the japonica genotype as female is a strategy worthy of consideration. and Demao Jiao, Benhua Ji, Xia Li.
The effects of Mn-deficiency on CO2 assimilation and excitation energy distribution were studied using Mn-starved maize leaves. Mn-deficiency caused about 70 % loss in the photon-saturated net photosynthetic rate (PN) compared to control leaves. The loss of PN was associated with a strong decrease in the activity of oxygen evolution complex (OEC) and the linear electron transport driven by photosystem 2 (PS2) in Mn-deficienct leaves. The photochemical quenching of PS2 (qP) and the maximum efficiency of PS2 photochemistry (Fv/Fm) decreased significantly in Mn-starved leaves under high irradiance, implicating that serious photoinhibition took place. However, the 'high-energy' fluorescence quenching (qE) decreased, which was associated with xanthophyll cycle. The results showed that the pool of de-epoxidation components of the xanthophyll cycle was lowered markedly owing to Mn deficiency. Linear electron transport driven by PS2 de-creased significantly and was approximately 70 % lower in Mn-deficient leaves than that in control, indicating less trans-thylakoid pH gradient was built in Mn deficient leaves. We suggest that the decrease of non-radiative dissipation depending on xanthophyll cycle in Mn-starved leaves is a result of the deficiency of trans-thylakoid pH gradient. and C. D. Jiang, H. Y. Gao, Q. Zou.
Tomato (Lycopersicon esculentum Mill. cv. Pearson) plants were grown in growth chambers for 25 days with cadmium (Cd) and then exposed briefly to ozone (O3). Gas exchange, chlorophyll a fluorescence, and pigment composition were analysed in leaves at the end of the treatment to assess the effects of a single pollutant and their combination on photosynthesis. The CO2 assimilation rate was dramatically reduced in plants subjected to the combined treatment, while the single effect of Cd appeared less severe than that of O3. The decline of CO2 photoassimilation found in all
O3-exposed plants was attributed to both stomatal and nonstomatal limitations. Tomato plants seemed to detoxify Cd to a great extent, but this resulted in growth suppression. In response to O3 exposure, the plants protected their photosystems by heat dissipation of excess energy via the xanthophyll cycle. Cd combined with O3 affected adversely this cycle resulting in an increase in photosynthetic performance under the same experimental light conditions., E. Degl’Innocenti, A. Castagna, A. Ranieri, L. Guidi., and Obsahuje bibliografii
The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves., A. Janeczko, M. Dziurka, G. Gullner, M. Kocurek, M. Rys, D. Saja,
A. Skoczowski, I. Tóbiás, A. Kornas, B. Barna., and Obsahuje bibliografii
To probe the role of xanthophylls in non-photochemical quenching (NPQ) and the compensatory acclimated photoprotection mechanisms, a tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) Xa mutant with deficit in lutein (L) and neoxanthin (N) contents was used. The Xa mutant showed lowered NPQ, an increased degree of de-epoxidation state [(A+Z)/(V+A+Z)], and decreases of photosystem 2 (PS2) antenna size. Although the Xa mutant had a CO2 assimilation rate similar to that of Ailsa Craig, it exhibited a much larger stomatal conductance (gs) than Ailsa Craig. Decreased electron flux in PS2 (J PS2) for the Xa mutant was associated with electron flux for photorespiratory carbon oxidation (Jo) and alternative electron flux in PS2 (Ja) while electron flux for photosynthetic carbon reduction (Jc) was not different from Ailsa Craig. Moreover, the Xa mutant also exhibited higher activities of antioxidant enzymes, higher contents of ascorbate and glutathione, and lower contents of reactive oxygen species. Hence some compensatory acclimated mechanisms of photoprotection operated properly in the lack of NPQ and xanthophylls. and Y. J. Wang ... [et al.].
Maize (Zea mays) seedlings were exposed for 6 h to strong irradiance (1 000 μmol m-1 s-1 of PPFD) at 5, 12, 17, or 25 °C, followed by an exposure to the darkness for 6 h at 22 °C. Leaf chlorophyll fluorescence, net photosynthetic rate (PN), and the amount of superoxide radicals (O2-⋅) in relation to chilling-induced photoinhibition were investigated. During the photophase, a good correlation (r=-0.879) was observed between ΦPS2 (relative quantum efficiency of PS2 electron transport) and the amount of O2-⋅. Treatment with exogenous O2-⋅ reduced the PN and ΦPS2 as the chilling stress did, that was inhibited by specific scavenger of O2-⋅. Hence chilling-induced photoinhibition might be due to the production of O2-⋅. In contrast, in the dark period, PN and ΦPS2 of the seedlings treated with the exogenous O2-⋅ were enhanced, but they were inhibited by the specific scavenger of O2-⋅, showing the photoprotective role of O2-⋅ in the recovery phase. Furthermore, in terms of the effect of exogenous O2-⋅ on the xanthophyll cycle, the O2-⋅ production suggested a promotion effect for the de-epoxidation of violaxanthin during the photophase, the epoxidation of zeaxanthin at the dark stage, and the increase of the xanthophyll pool both in the photophase and dark phase, resulting in an enhancement of the ability of non-photochemical quenching to avoid or alleviate the damage to photosynthetic apparatus. and D. Ke, G. Sun, Y. Jiang.