In carob tree (Ceratonia siliqua) radiant energy saturated net photosynthetic rate (PN) during summer was about 10 % of the spring values. This was accompanied by a reduction in stomatal conductance (gs), which only partially explains the strong reduction in PN. Photosynthetic capacity (Pmax) and quantum yield (Φ), both measured under saturating CO2, had the maximum in spring (about 34 μmol m-2 s-1 and 0.08 mol mol-1, respectively) and both decreased in late summer to about 55 % of their spring values. Despite strong decreases in Φ, photoinhibition of photosystem 2 (PS2) was negligible or easily reversible in carob leaves subjected to summer drought, since Fv/Fm, measured in the morning, did not show appreciable changes. The recovery of affected parameters was very rapid after the first rains in late October. The chlorophyll (Chl) alb ratio in the end of the summer was 2.6, a value significantly lower than 3.6 obtained in the spring, suggesting that Chl a was preferentially reduced. and J. C. Ramalho, J. A. Lauriano, M. A. Nunes.
The effects of drought on thylakoid acyl lipid composition, photosynthetic capacity (P max), and electrolyte lekage were evaluated in two-months-old peanut cultivars (57-422, 73-30, GC 8-35) growing in a glasshouse. For lipid studies, plants were submitted to three treatments by withholding irrigation: control (C), mild water stress (S1), and severe water stress (S2). Concerning membrane and photosynthetic capacity stability, drought was imposed by polyethylene glycol (PEG 600). In the cv. 73-30 a sharp decrease in the content of thylakoid acyl lipids was observed, already under S1 conditions, whereas cv. 57-422 was strongly affected only under S2. Cv. GC 8-35 had the lowest content of acyl lipids under control conditions, a significant increase under S1 conditions, and only under S2 a decrease occurred. Thus concerning lipid stability, cv. 73-30 was the most sensitive. Among lipid classes, phospholipids and galactolipids were similarly affected, as was MGDG relatively to DGDG. Water deficit imposed by PEG induced a higher increase in electrolyte leakage in cv. 73-30 than in the other cvs. A positive relationship between acyl lipid concentration and membrane integrity was found in all studied cvs. A positive association between acyl lipid concentration, membrane integrity, and P max was found in the cvs. 57-422 and 73-30. and J. A. Lauriano ... [et al.].
The effect of drought on plant water relations and photosynthesis of Vigna glabrescens (Vg) and Vigna unguiculata (cvs. 1183, EPACE-1 and Lagoa), which differ in their drought resistance, was compared. With the increase of drought severity, Vg showed a more gradual stomatal closure and maintained significantly higher levels of stomatal conductance (gs) and photosynthetic activity (PN) than the other genotypes even when minimum relative water content (RWC) values were observed. Furthermore, Vg was the only genotype able to accumulate significant amounts of proline already under moderate water deficit, what could explain the lower osmotic potential (ψs) values observed in these plants. The three V. unguiculata cultivars presented a similar stomatal control under increasing water deficit. A mesophyllic impairment of photosynthetic capacity (Pmax) was detected for cv. 1183 from the beginning of drought onset (85-75 % RWC) while in the Vg plants the values remained unaffected along the whole drought period, indicating that PN decrease observed in this genotype is mainly a consequence of stomatal closure. Such Pmax maintenance suggests the existence of a high mesophyllic ability to cope with increasing tissue dehydration in Vg. and P. Scotti Campos ... [et al.].
Effect of drought on the mechanisms of energy dissipation was evaluated in two-month-old Arachis hypogaea cvs. 57-422, 73-30, and GC 8-35. Plants were submitted to three treatments: control (C), mild water stress (S1), and severe water stress (S2). Photosynthetic performance was evaluated as the Hill and Mehler reactions. These activities were correlated with the contents of the low and high potential forms of cytochrome (cyt) b 559, plastoquinone, cyt b 563, and cyt f. Additionally, the patterns of carotenoids and chlorophylls (Chls), as well as the alterations of Chl a fluorescence parameters were studied. Under mild water stress the regulatory mechanism at the antennae level was effective for 57-422 and GC 8-35, while in the cv. 73-30 an overcharge of photosynthetic apparatus occurred. Relative to this cv., under S1 the stability of carotene and the dissipative cycle around photosystem (PS) 2 became an important factor for the effective protection of the PS2 reaction centres. The cyclic electron flow around PS1 was important for energy dissipation under S1 only for the cvs. 57-422 and 73-30. and J. A. Lauriano ... [et al.].
The photosynthetic response of three Arachis hypogaea L. cultivars (57-422, 73-30, and GC 8-35) grown for two months was measured under water available conditions, severe water stress, and 24, 72, and 93 h following re-watering. At the end of the drying cycle, all the cultivars reached dehydration, relative water content (RWC) ranging between 40 and 50 %. During dehydration, leaf stomatal conductance (gs), transpiration rate (E), and net photosynthetic rate (PN) decreased more in cvs. 57-422 and GC 8-35 than in 73-30. Instantaneous water use efficiency (WUEi) and photosynthetic capacity (Pmax) decreased mostly in cv. GC 8-35. Except in cv. GC 8-35, the activity of photosystem 1 (PS1) was only slightly affected. PS2 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) were the main targets of water stress. After re-watering, cvs. 73-30 and GC 8-35 rapidly regained gs, E, and PN activities. Twenty-four hours after re-watering, the electron transport rates and RuBPCO activity strongly increased. PN and Pmax fully recovered later. Considering the different photosynthetic responses of the studied genotype, a general characterisation of the interaction between water stress and this metabolism is presented. and J. A. Lauriano ... [et al.].