Cadmium inhibits photosynthetic capacity of plants by disturbing protein conformations, whereas phytocystatins prevent degradation of target proteins and are involved in abiotic stress tolerance. Two mustard (Brassica juncea L.) cultivars, Ro Agro 4001 and Amruta, were grown with Cd (50 µM) in order to study physiological and biochemical basis of differences in Cd tolerance. Amruta accumulated higher Cd and H2O2 concentrations in leaves than that of Ro Agro 4001. Cd significantly decreased photosynthesis and growth of plants in both cultivars by reducing a chlorophyll content, gas exchange parameters, and activity of Rubisco; the effects were more prominent in Amruta than those in Ro Agro 4001. The greater photosynthesis and growth of Ro Agro 4001 under Cd stress might be attributed to its higher phytocystatin activity together with greater ascorbate peroxidase activity, photosynthetic nitrogen-use efficiency, sulphur assimilation (ATP-sulphurylase activity and S content), and contents of cysteine and reduced glutathione compared to Amruta. In contrast, the activity of superoxide dismutase (SOD) was higher in Amruta than that of Ro Agro 4001 under control conditions, whereas the Cd treatment increased significantly the SOD activity in both cultivars with the greater increase in Ro Agro 4001. The fluorescence spectra of phytocystatin showed a lesser change in Ro Agro 4001 under Cd stress than that in Amruta suggesting higher resistance of Ro Agro 4001 to Cd. The higher phytocystatin activity under Cd stress in Ro Agro 4001 compared to Amruta enabled the plants to protect their proteins more efficiently. This resulted in a greater increase of photosynthetic capacity in Ro Agro 4001 than that of Amruta. Thus, the phytocystatin activity may be considered as a physiological parameter for augmenting photosynthesis and growth of mustard under Cd stress., T. S. Per, S. Khan, M. Asgher, B. Bano, N. A. Khan., and Obsahuje bibliografii
Three-month-old plants of mulberry (Morus alba L. cv. Kanva-2) were subjected to a drought stress by withholding water supply. As the leaf water potential (ΨW) was dropping progressively with the severity of treatment and increasing stress duration, the values of leaf area, dry mass accumulation, total chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were declined. The photosystem 2 (PS2) photochemical efficiency significantly decreased only at a severe stress treatment. The intercellular CO2 concentration (Ci) remained unaltered during a mild stress, yet it increased under moderate and severe stresses. The Ci/gs ratio reflected the mesophyll efficiency during water stress. Rewatering of the plants led to an almost complete recovery of PN, E, and gs, indicating that a short-term stress brings about reversible effects only. and S. Ramanjulu ... [et al.].
Significant differences in net photosynthetic rate (PN) of leaves between two maize (Zea mays L.) strains (Shuang 105 and 40×44) grown in the field were observed. At several growth stages, PN of 40×44 was higher than that of Shuang 105 (from 10.3 to 32.5 %). Moreover, the strain 40×44 had a higher plant height, larger leaf area, lower chlorophyll content, and higher photochemical efficiency of photosystem 2 (PS2) (Fv/Fm and ΔF/Fm') than strain Shuang 105. Shuang 105, which showed lower PN, had lower stomatal conductances (gs) but slightly higher intercellular CO2 concentrations (Ci) than those of 40×44. Hence the differences in
PN between the two strains did not result from the difference in gs, but probably from that in light reaction system. and Hua Jiang, Da-Quan Xu.
Morphological and ultrastructural changes, the chlorophyll (Chl) content and Chl a fluorescence induction were studied in primary leaves of runner beán plants (Phaseolus coccineus L. cv. Pi?kny Jaš) grown in Knop solution and treated with excess Cu [20 g(CuS04 x 5 H2O) m"^] at difíerent growth stages. The plants were exposed to the metal for 12 d. Cu added to the nutrient solution at the beginning growth stage induced significant leaf area reduction (31 %) as well as increase of Chl accumulation (148 %) and leaf density (122 %). No ultrastructural changes of chloroplasts were seen. Application of Cu at the advanced growth stage caused relatively smáli changes except local disturbances in stroma lamellae and leaf reduction to 70 % of control. Significant disorganization of chloroplast ultrastructure, smáli leaf area reduction (80 %) but specific leaf area increase (163 %) and leaf density decrease (67 %) were seen only in the primary leaves of plants treated with Cu at the finál stage of growth. These changes, similar to senescence response, were accompanied by Fy/Fo ratio decrease to 67 % in comparison with control.
The effect of high irradiance (HI) during desiccation and subsequent rehydration of the homoiochlorophyllous desiccation-tolerant shade plant Haberlea rhodopensis was investigated. Plants were irradiated with a high quantum fluence rate (HI; 350 µmol m-2 s-1 compared to ca. 30 µmol m-2 s-1 at the natural rock habitat below trees) and subjected either to fast desiccation (tufts dehydrated with naturally occurring thin soil layers) or slow desiccation (tufts planted in pots in peat-soil dehydrated by withholding irrigation). Leaf water content was 5 % of the control after 4 d of fast and 19 d of slow desiccation. Haberlea was very sensitive to HI under all conditions. After 19 d at HI, even in well-watered plants there was a strong reduction of rates of net photosynthesis and transpiration, contents of chlorophyll (Chl) and carotenoids, as well as photosystem 2 activity (detected by the Chl fluorescence ratio RFd). Simultaneously, the blue/red and green/red fluorescence ratios increased considerably suggesting increased synthesis of polyphenolic compounds. Desiccation of plants in HI induced irreversible changes in the photosynthetic apparatus and leaves did not recover after rehydration regardless of fast or slow desiccation. Only young leaves survived desiccation. and K. Georgieva, S. Lenk, C. Buschmann.
Wheat provides a unique genetic system in which variable sink size is available across the ploidies. We characterized monocarpic senescence in diploid, tetraploid, and hexaploid wheat species in flag leaf from anthesis up to full grain maturity at regular intervals. Triticum tauschii Acc. cv. EC-331751 showed the fastest rate of senescence among the species studied and the rate of loss per day was highest in terms of photosynthesis rate, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) content, and flag leaf N content coupled with a higher rate of gain in grain N content. Cultivars Kundan and HD 4530 maintained high flag leaf N content throughout grain filling as compared to the diploids and showed a slower rate of senescence. RuBPCO content was higher in the diploids as compared to Kundan and HD 4530 at anthesis. However, the rate of decline in RuBPCO content per day was also higher in the diploids. This degradation in RuBPCO was mediated by high endoproteolytic activities in the diploids which in turn supported its higher rate of N mobilization as compared to the tetraploid and hexaploid wheat. Acidic endopeptidases were responsible for the mobilization of flag leaf nitrogen in wheat across ploidy levels (r=-0.582, p<0.01). and B. Srivalli, R. Khanna-Chopra.
Of the four tested sweet potato cultivars having different features in growth and yield, cv. Koganesengan (KOG) was sustainable in photosynthetic activity through young to aged leaves under drought. One of the causes for this phenomenon may be stomatal conductance (g s) of this cultivar that was relatively high in both aged and drought-imposed leaves. In these leaves the non-photochemical quenching (NPQ) was low and the quantum yield of photosystem 2 (Φe) was high, compared to those of the other cultivars. This helps to prevent excessive accumulation of chemical energy in leaves and a decrease in photoinhibition damage to the photosynthetic function, by which KOG sustains a relatively high photosynthetic activity under the drought and alleviates functional deterioration caused by leaf age. and Haimeirong, F. Kubota.
Characterization of different component processes of photosynthesis is useful to understand the growth status of plants and to discover possible unintended effects of genetic modification on photosynthesis in transgenic plants. We focused on the changes in photosynthetic gas-exchange properties, reflectance spectra, and plant growth traits among groups of different transgenic barley T1 (TolT1) and its isogenic controls (TolNT1), TolT1, and group of its own transgenic progenies T2 (TolT2), TolNT1 and its wild type (WT), respectively. Gas-exchange measurements showed that only the net photosynthetic rate (P N) and the light-use efficiency (LUE) differed significantly between TolT1 and TolT2 with no obvious changes of other characteristics. Reflectance measurements indicated that the reflectance ratio was sensitive to identify the differences between two barley groups. Differences in reflectance expressed on an index basis depended on barley groups. The relationship between LUE and the photochemical reflectance index (PRI) at a leaf level among different barley groups of WT, TolNT1, TolT1 and TolT2 did not changed obviously. The differences in the total leaf area per plant (LA) between WT and TolNT1 as well as between TolT1 and TolT2 were significant. This study finally provided a plausible complex explanation for the unintended effects of genetic transformation on photosynthesis-related properties in barley at different levels. Furthermore, it was concluded that the photosynthesis-related properties of transgenic plants based on gas exchange, leaf reflectance, and plant growth measurements responded to the same environment in a more different way between two subsequent generations than to the processes of the gene insertion by Agrobacterium and associated tissue culture., C. X. Sun ... [et al. ]., and Obsahuje bibliografii
The kinetics and other characteristics of nitrate reductase (NR, EC 1.6.6.1) in cowpea [Vigna unguiculata (L.) Walp.] seedlings irradiated with biologically effective UV-B radiation (280-320 nm, 3.2 W m-2 s-1) were recorded. The in vivo and in vitro NR activities were inhibited by 34 and 41 % under UV-B treatment, respectively. Both Vmax and Km for the substrate were enhanced by UV-B radiation. The Km for nitrate increased from 1.2 to 1.7 mM after the UV-B irradiation. The change in Km for NADH was from 0.12 to 0.17 mM. The increases in Km indicate that UV-B radiation seriously changes the topology of NR, particularly with respect to the nitrate and NADH binding sites. The rate of NR turnover indicates the extent of damage inflicted by UV-B radiation on the nitrate metabolism. The half-life (t1/2) of NR was reduced from 7 to 4 h in the UV-B treated seedlings. UV-B also inhibited the kinetics of nitrate uptake by plants: its Km increased from 0.08 to 0.12 mM. and T. Balakumar ... [et al.].
Leaf traits have long been recognized as influential factors in the acquisition and processing of resources by plants. However, there is less knowledge of between-species variations in seasonal changes in leaf traits and trait interrelationships. Therefore, we examined variations in leaf area (LA), dry biomass (DM), specific leaf area (SLA), and leaf gas-exchange parameters in one non-native and seven native tree species under field environmental conditions, in a karst area in China subjected to desertification. Measurements were taken three times during the growing season. The results show that the seven native trees had higher LA, DM, and water-use efficiency (WUE) than the non-native Cinnamomum camphora. In contrast, all the native tree species except Ligustrum lucidum had lower photosynthetic rates (PN) than the non-native species. In all species, the relationship between LA and DM was less variable than the relationship between SLA and LA. However, leaves of the non-native C. camphora and native species Sterculia lanceolata, Cleidiocarpon cavalerei and Cyclobalanopsis glauca were highly sensitive to seasonal conditions, leaves of Sapindus mukorossi and Ligustrum lucidum were less sensitive to seasonal changes, and leaves of Syzygium cumini and Cephalomappa sinensis were insensitive. An understanding of leaf traits will aid the selection of suitable species for land restoration. and L.-Y. Wei ... [et al.].