How the photosynthetic characteristics of insect-resistant transgenic cotton (Gossypium hirsutum L.) respond to light or whether this genetic transformation could result in unintended effects on their photosynthetic and physiological processes is not well known. Two experiments were conducted to investigate the shapes of net photosynthetic rate (P N), stomatal conductance (g s), apparent light use efficiency (LUEapp) and water use efficiency (WUE) light-response curves for single leaves of Bt (Bacillus thuringiensis) and Bt+CpTI (cowpea trypsin inhibitor) transgenic cotton plants and their non-transgenic counterparts, respectively. Results showed that the significant difference in response of P N and WUE to light between transgenic cotton and non-transgenic cotton occured but not always throughout the growing season or in different experiments or for all transgenic cotton lines. It was highly dependent on growth stage, culture condition and variety, but no obvious difference between any transgenic cotton and non-transgenic cotton in the shapes of g s and LUEapp light-response curves was observed in two experiments at different growth stages. In the field experiments, transgenic Bt+CpTI cotton was less sensitive to response of P N to high irradiance at the boll-opening stage. In pot experiments, WUE light-response curves of both Bt transgenic cotton and Bt+CpTI transgenic cotton progressively decreased whereas non-transgenic cotton slowly reached a maximum at high irradiance at boll-opening stage. We supposed that culture environment could affect the photosynthesis of transgenic cotton both directly and indirectly through influencing either foreign genes expression or growth and physiological processes. and C. X. Sun ... [et al.].
Characterization of different component processes of photosynthesis is useful to understand the growth status of plants and to discover possible unintended effects of genetic modification on photosynthesis in transgenic plants. We focused on the changes in photosynthetic gas-exchange properties, reflectance spectra, and plant growth traits among groups of different transgenic barley T1 (TolT1) and its isogenic controls (TolNT1), TolT1, and group of its own transgenic progenies T2 (TolT2), TolNT1 and its wild type (WT), respectively. Gas-exchange measurements showed that only the net photosynthetic rate (P N) and the light-use efficiency (LUE) differed significantly between TolT1 and TolT2 with no obvious changes of other characteristics. Reflectance measurements indicated that the reflectance ratio was sensitive to identify the differences between two barley groups. Differences in reflectance expressed on an index basis depended on barley groups. The relationship between LUE and the photochemical reflectance index (PRI) at a leaf level among different barley groups of WT, TolNT1, TolT1 and TolT2 did not changed obviously. The differences in the total leaf area per plant (LA) between WT and TolNT1 as well as between TolT1 and TolT2 were significant. This study finally provided a plausible complex explanation for the unintended effects of genetic transformation on photosynthesis-related properties in barley at different levels. Furthermore, it was concluded that the photosynthesis-related properties of transgenic plants based on gas exchange, leaf reflectance, and plant growth measurements responded to the same environment in a more different way between two subsequent generations than to the processes of the gene insertion by Agrobacterium and associated tissue culture., C. X. Sun ... [et al. ]., and Obsahuje bibliografii