This study was designed to test the hypothesis that the spectral composition of incident radiation, as defined by the relative proportions of blue (B; λmax = 455 nm) and red (R; λmax = 625 nm) photons, can affect photosynthetic induction, since B photons stimulate stomatal opening and are more effectively absorbed by leaves than R photons. Different stages of photosynthetic induction, primarily determined by the photo-modulation of Rubisco activity and stomata opening, were investigated in dark-adapted leaves of Fagus sylvatica transferred to saturating irradiance [800µmol(photon) m-2 s-1] at B/R ratios of 1/3, 1/1, or 3/1.
In agreement with our hypothesis, photosynthesis was induced faster by irradiance with a high B/R ratio (3/1); as demontrated by a higher IS60 (induction state 60 s after leaf illumination) and lower T 90 (the time period required to reach 90 % of maximum steady-state photosynthesis). However, there were no differences in induction between leaves receiving equal (1/1) and low (1/3) B/R ratios. Electron transport was highly sensitive to radiation quality, exhibiting faster induction kinetics with increasing B/R ratio. Such stimulation of carbon-assimilatory processes corresponds with faster activation of Rubisco and lower non-photochemical quenching (NPQ) as the proportion of B photons is increased. In contrast, the kinetics of stomatal opening was independent of the spectral composition of incoming radiation. Since slightly higher absorption efficiency of high B/R radiation does not fully explain the changes in induction kinetics, the other possible mechanisms contributing to the stimulation of electron transport and Rubisco activity are discussed. and M. Košvancová-Zitová ... [et al.].
Its high oxidant capacity and ability to generate reactive oxygen species cause ozone toxicity. We studied the effect of ambient ozone on chlorophyll (Chl) a fluorescence, antioxidant enzymes, ascorbate contents, and lipid peroxidation in potatoes grown in open-top chambers in the field. In plants grown in non-filtered air (NFA), the development of non-photochemical quenching brought about a decrease in photosystem 2 (PS2) photochemical efficiency. Also the ability of PS2 to reduce the primary acceptor QA was lower than in charcoal-filtered, ozone-free air (CFA). Changes in Chl fluorescence yield were associated with changes in the thylakoid membrane. Ozone altered chloroplast membrane properties, as indicated by an increase in membrane lipid peroxidation in FNA-leaves compared to CFA plants. The ascorbate pool and activities of antioxidant enzymes were used for an indication of the detoxification system state in NFA and CFA leaves, whereby ozone affects the ascorbate concentration and decreases the antioxidant enzymes activities. The capacity of both detoxifying systems together was not high enough to protect potato plants against ambient ozone concentrations which reduced the photosynthetic yield in this potato cultivar. and A. Calatayud, J. W. Alvarado, E. Barreno.
We compared the sensitivity to cold stress, in terms of photosynthetic capacity and changes in chlorophyll fluorescence of photosystem 2 (PS2), of an evergreen and a deciduous oak species, which co-occur in the southeastern United States. We predicted that the evergreen species, Quercus virginiana, which must endure winter, is likely to have an inherently greater capacity for energy dissipation and to be less susceptible to chilling stress than the deciduous species, Quercus michauxii. Short-term cold stress in both species lead to greater than 50 % reduction in maximum photosynthetic rates, 60-70 % reduction in electron transport, and irreversible quenching of PS2 fluorescence. The kinetics of recovery in the dark after exposure to 1 h high irradiance (1000 µmol m-2 s-1) and chilling (5 °C) showed that the evergreen Q. virginiana exhibited more protective qE and less irreversible quenching (qI) than the deciduous Q. michauxii. The large qE which we observed in Q. virginiana suggests that the capacity for photoprotection at low temperatures is not induced by a long-term acclimation to cold but preexists in evergreen leaves. This capacity may contribute to the ability of this species to maintain leaves during the winter. and J. Cavender-Bares ... [et al.].
To probe the role of xanthophylls in non-photochemical quenching (NPQ) and the compensatory acclimated photoprotection mechanisms, a tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) Xa mutant with deficit in lutein (L) and neoxanthin (N) contents was used. The Xa mutant showed lowered NPQ, an increased degree of de-epoxidation state [(A+Z)/(V+A+Z)], and decreases of photosystem 2 (PS2) antenna size. Although the Xa mutant had a CO2 assimilation rate similar to that of Ailsa Craig, it exhibited a much larger stomatal conductance (gs) than Ailsa Craig. Decreased electron flux in PS2 (J PS2) for the Xa mutant was associated with electron flux for photorespiratory carbon oxidation (Jo) and alternative electron flux in PS2 (Ja) while electron flux for photosynthetic carbon reduction (Jc) was not different from Ailsa Craig. Moreover, the Xa mutant also exhibited higher activities of antioxidant enzymes, higher contents of ascorbate and glutathione, and lower contents of reactive oxygen species. Hence some compensatory acclimated mechanisms of photoprotection operated properly in the lack of NPQ and xanthophylls. and Y. J. Wang ... [et al.].
We compared by chlorophyll (Chl) fluorescence imaging the effects of two strains of the same virus (Italian and Spanish strains of the Pepper mild mottle virus - PMMoV-I and-S, respectively) in the host plant Nicotiana benthamiana. The infection was visualized either using conventional Chl fluorescence parameters or by an advanced statistical approach, yielding a combinatorial set of images that enhances the contrast between control and PMMoV-infected plants in the early infection steps. Among the conventional Chl fluorescence parameters, the non-photochemical quenching parameter NPQ was found to be an effective PMMoV infection reporter in asymptomatic leaves of N. benthamiana, detecting an intermediate infection phase. The combinatorial imaging revealed the infection earlier than any of the standard Chl fluorescence parameters, detecting the PMMoV-S infection as soon as 4 d post-inoculation (dpi), and PMMoV-I infection at 6 dpi; the delay correlates with the lower virulence of the last viral strain. and M. Pineda ... [et al.].
We compared photoinhibition sensitivity to high irradiance (HI) in wild-type barley (wt) and both its chlorina f104-nuclear gene mutant, that restricts chlorophyll (Chl) a and Chl b synthesis, and its f2-nuclear gene mutant, that inhibits all Chl b synthesis. Both Fv/Fm and ΦPS2 decreased more significantly in f2 than f104 and wt with duration of HI exposure. Chl degraded more rapidly in the f2 than in either f104 or wt. Most sensitivity to photoinhibition was exhibited for f2, whereas there was little difference in response to HI between the f104 and wt. The highest de-epoxidation (DES) value at every time point of exposure to HI was measured for f2, whereas the wt had the lowest value among the three strains. There were two lifetime components resolved for the conversion of violaxanthin (V) to zeaxanthin plus antheraxanthin (Z + A). The most rapid lifetime was around 6 min and the slower lifetime was >140 min, in both the mutants and wt. However, the wt and f104 both displayed larger amplitudes of both de-epoxidation lifetimes than f2. The difference between the final de-epoxidation state (DES = [Z + A]/[V + A + Z]) in the light compared to the dark expressed as ΔDES for wt, f104, and f2 was 0.630, 0.623, and 0.420, respectively. The slow lifetime component and overall larger ΔDES in the wt and f104 correlated with more photoprotection, as indicated by relatively higher Fv/Fm and ΦPS2, compared to the f2. Hence the photoprotection against photoinhibition has no relationship with the absolute DES value, but there is a strong relationship with de-epoxidation rate and relative extent or ΔDES. and Chang-Lian Peng ... [et al.].
Photodynamic and photoprotective responses at different irradiances were investigated in transgenic rice (Oryza sativa) expressing Bradyrhizobium japonicum 5-aminolevulinic acid synthase (ALA-S). With high irradiance (HI) of 350 µmol m-2 s-1, transgenic lines P5 and P14 showed a decrease in contents of chlorophyll (Chl) and the chloroplast-encoded gene psbA mRNA, whereas a decrease in light-harvesting Chl-binding proteins was observed only in P14. These effects were not observed in the wild-type (WT) line treated with HI or all of the lines treated with low irradiance (LI) of 150 µmol m-2 s-1. HI resulted in a greater decrease in the quantum yield of photosystem 2 and a greater increase in non-photochemical quenching (NPQ) in the transgenic lines, particularly in P14, compared to WT. Photoprotective zeaxanthin contents increased at HI, even though carotenoid contents were lower in the transgenic lines compared to WT. When exposed to HI, superoxide dismutase greatly increased in transgenic lines P5 and P14, but peroxidase and glutathione reductase increased only in P14, in which more photodynamic damage occurred. Thus the greater expression of ALA-S in the transgenic plants developed the stronger protective functions, i.e. the increased values of NPQ and zeaxanthin, as well as more photodynamic reactions, i.e. decreased photosynthetic component and efficiency, in the photosynthetic complexes. However, the photodynamic reactions indicate that the antioxidant capacity was insufficient to cope with the severe stress triggered by photoactive porphyrins in the transgenic rice expressing ALA-S. and S. Jung ... [et al.].
By measurement of gas exchange and chlorophyll fluorescence, the effects of salt shock on photosynthesis and the mechanisms to protect photosynthetic machinery against photodamage during salt shock were investigated in leaves of Rumex seedlings. Salt shock induced significant decrease in photosynthesis both in 21 and 2 % O2. In 21 % O2, quantum yield of photosystem 2 (PS2) electron transport (ΦPS2) decreased slightly and qP remained constant, suggesting that the excitation pressure on PS2 did not increase during salt shock. In 2 % O2, however, both ΦPS2 and qP decreased significantly, suggesting that the excitation pressure on PS2 increased during salt shock. NPQ increased slightly in 21 % O2 whereas it increased significantly in 2 % O2. The data demonstrated that during salt shock a considerable electron flow was allocated to oxygen reduction in the Mehler-peroxidase reaction (MPR). Under high irradiance and in the presence of saturating CO2, the susceptibility of PS2 to photoinhibition in salt-shocked leaves was increased when the electron flow to oxygen in MPR was inhibited in 2 % O2. Hence, MPR is important in photoprotection of Rumex seedlings during salt shock. and H.-X. Chen ... [et al.].
The plants of Prosopis juliflora growing in northern India are exposed to large variations of temperature, vapour pressure deficits (VPD), and photosynthetic photon flux density (PPFD) throughout the year. Under these conditions P. juliflora had two short periods of leaf production, one after the winter season and second after summer, which resulted in two distinct even aged cohorts of leaves. In winter with cold nights (2-8 °C) and moderate temperatures during the day, the plants showed high rates of photosynthesis. In summer the midday temperatures often reached <45 °C and plants showed severe inhibition of photosynthesis. The leaves of second cohort appeared in July and showed typical midday depression of photosynthesis. An analysis of diurnal partitioning of the absorbed excitation energy into photochemistry showed that a smaller fraction of the energy was utilised for photochemistry and a greater fraction was dissipated thermally, further the photon utilisation for photochemistry and thermal dissipation is largely affected by the interaction of irradiance and temperature. The plants showed high photochemical efficiency of photosystem 2 (PS2) at predawn and very little photoinhibition in all seasons except in summer. The photoinhibition in summer was pronounced with very poor recovery during night. Since P. juliflora exhibited distinct pattern of senescence and production of new leaves after winter and summer stress period, it appeared that the ontogenic characteristic together with its ability for safe dissipation of excess radiant energy in P. juliflora contributes to its growth and survival. and P. A. Shirke, U. V. Pathre.
Lichen thalli were exposed to 4 regimes differing in irradiance and duration of irradiation. Photosynthetic efficiency of thalli was monitored by chlorophyll fluorescence parameters and xanthophyll cycle analysis. Maximal quantum yield of photosystem 2 (FV/FM) decreased gradually with time in long-term treatment. The effect of additional short-term high irradiance (HI) treatment applied each 24 h was not significant. Nevertheless, short-term HI applied repeatedly on thalli kept in the dark led to a significant decrease of FV/FM. Non-photochemical quenching recorded during the long-term treatment corresponded to the content of zeaxanthin (Z). In short-term treatment, however, proportion of Z (and antheraxanthin) to total amount of xanthophyll cycle pigments recovered to the initial values every 24 h after each repeated short-term HI event in thalli kept in dark. Thus duration of irradiation rather than irradiance and frequency of HI events is important for a decrease in primary photosynthetic processes in wet thalli of Lasallia pustulata. Rapidly responding photoprotective mechanisms, such as conversion of xanthophyll cycle pigments, are involved mainly in short-term irradiation events, even at HI. and M. Barták ... [et al.].