Mulberry genotypes were subjected to salinity (0-12 mS cm-1) in pot culture experiment. Chlorophyll and total carotenoid contents were reduced considerably by salinity. At low salinity, photosynthetic CO2 uptake increased over the control, but it decreased at higher salinity. Contents of soluble proteins, free amino acids, soluble sugars, sucrose, starch, and phenols increased at salinity of 1-2 mS cm-1 and decreased at higher salinity (8-12 mS cm-1). Glycine betaine accumulated more than proline, the maximum accumulation of both was at salinity of 2-4 mS cm-1. Among the genotypes studied, BC2-59 followed by S-30 showed better salinity tolerance than M-5. and P. Agastian, S. J. Kingsley, M. Vivekanandan.
Three-month-old mulberry (Morus alba L.) cultivars (drought tolerant S13 and drought sensitive S54) were subjected to water stress for 15 d. Water stress decreased the leaf water potential, net photosynthetic rate (PN), and stomatal conductance (gs) in both the cultivars. However, the magnitude of decline was comparatively greater in the sensitive cultivar (S54). Intercellular CO2 concentration (Ci) was unaltered during mild stress, but significantly increased at severe stress in both cultivars. The photosystem 2 activity significantly declined only at a severe stress in both cultivars. The Ci/gs ratio representing the mesophyll efficiency was greater in the tolerant cultivar S13. Involvement of stomatal and/or non-stomatal components in declining PN depended on the severity and duration of stress. However, the degree of non-stomatal limitations was relatively less in the drought tolerant cultivar. and S. Ramanjulu, N. Sreenivasulu, C. Sudhakar.
Net photosynthetic rate (PN), stomatal conductance (gS), transpiration rate (E), intercellular CO2 concentration (Ci), leaf water potential (Ψw), leaf area, chlorophyll (Chl) content, and the activities of photosynthetic carbon reduction cycle (PCR) enzymes in two mulberry (Morus alba L.) cultivars (drought tolerant Anantha and drought sensitive M-5) were studied during water stress and recovery. During water stress, PN, gS, and E declined whereas Ci increased. PN, gS, and E were less affected in Anantha than in M-5, which indicates tolerance nature of Anantha over M-5. Activities of ribulose-5-phosphate kinase, NAD- and NADP-glyceraldehyde-3-phosphate dehydrogenases, and 3-phosphoglycerate kinase decreased with increasing stress in both the cultivars. The enzyme activities less affected in tolerant (Anantha) than in sensitive cultivar (M-5) were restored after re-watering to almost initial values in both the cultivars. Re-watering of the plants led to an almost complete recovery of PN, E, and gS, indicating that a short-term stress brings about reversible effect in these two cultivars of mulberry. and S. Thimmanaik ... [et al.].
Three-month-old mulberry (Morus alba L.) cultivars (salt tolerant cv. S1 and salt sensitive cv. ATP) were subjected to different concentrations of NaCl for 12 d. Leaf area, dry mass accumulation, total chlorophyll (Chl) content, net CO2 assimilation rate (PN), stomatal conductance (gs), and transpiration rate (E) declined, and intercellular CO2 concentration (Ci) increased. The changes in these parameters were dependent on stress severity and duration, and differed between the two cultivars. The tolerant cultivar showed a lesser reduction in PN and gs coupled with a better Ci and water use efficiency (WUE) than the sensitive cultivar. and S. Giridara Kumar ... [et al.].
Three-month-old plants of mulberry (Morus alba L. cv. Kanva-2) were subjected to a drought stress by withholding water supply. As the leaf water potential (ΨW) was dropping progressively with the severity of treatment and increasing stress duration, the values of leaf area, dry mass accumulation, total chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were declined. The photosystem 2 (PS2) photochemical efficiency significantly decreased only at a severe stress treatment. The intercellular CO2 concentration (Ci) remained unaltered during a mild stress, yet it increased under moderate and severe stresses. The Ci/gs ratio reflected the mesophyll efficiency during water stress. Rewatering of the plants led to an almost complete recovery of PN, E, and gs, indicating that a short-term stress brings about reversible effects only. and S. Ramanjulu ... [et al.].
Limitations in photosystem function and photosynthetic electron flow were investigated during leaf senescence in two field-grown plants, i.e., Euphorbia dendroides L. and Morus alba L., a summer- and winter-deciduous, shrub and tree, respectively. Analysis of fast chlorophyll (Chl) a fluorescence transients and post-illumination fluorescence yield increase were used to assess photosynthetic properties at various stages of senescence, the latter judged from the extent of Chl loss. In both plants, the yield of primary photochemistry of PSII and the content of PSI remained quite stable up to the last stages of senescence, when leaves were almost yellow. However, the potential for linear electron flow along PSII was limited much earlier, especially in E. dendroides, by an apparent inactivation of the oxygen-evolving complex and a lower efficiency of electron transfer to intermediate carriers. On the contrary, the corresponding efficiency of electron transfer from intermediate carriers to final acceptors of PSI was increased. In addition, cyclic electron flow around PSI was accelerated with the progress of senescence in E. dendroides, while a corresponding trend in M. alba was not statistically significant. However, there was no decrease in PSI activity even at the last stages of senescence. We argue that a switch to cyclic electron flow around PSI during leaf senescence may have the dual role of replenishing the ATP and maintaining a satisfactory nonphotochemical energy quenching, since both are limited by hindered linear electron transfer., C. Kotakis, A. Kyzeridou, Y. Manetas., and Obsahuje bibliografii