14CO2 assimilation rate (P), leaf diffusive conductance (gs), photosynthetic electron flow, and activities of enzymes of Calvin cycle were studied in a horsegram [Macrotyloma uniflorum (Lam.)] in response to salinity induced by NaCl or Na2SO4. A significant reduction in P and gs by both salt treatments was registered. Na2SO4 caused a greater reduction in gs than the NaCl salinity. Studies with isolated chloroplasts confirmed a greater sensitivity to NaCl than to Na2SO4. Salinity inhibited the photosynthetic electron transport. The activity of ribulose-1,5-bisphosphate carboxylase (E.C.4.1.1.39) was under salinity inhibited more than the activities of other three enzymes of the Calvin cycle, ribulose-5-phosphate kinase (E.C.2.7.1.19), ribose-5-phosphate isomerase (E.C.5.3.16), and NADP-glyceraldehyde-3-phosphate dehydrogenase (E.C.1.2.13). These inhibitions lead to a reduced capacity for ribulose-1,5-bisphosphate regeneration. Isolated chloroplasts extracted from salt stressed plants and supplemented with the substrates of Calvin cycle could elevate P, but the P was always lower than in the controls. Decreased P in horsegram exposed to high salinity can be attributed to both stomatal and non-stomatal components, however, the sensitivity to the salt source, NaCl or Na2SO4, was different. and P. Sreenivasulu Reddy ... [et al.].
Three-month-old mulberry (Morus alba L.) cultivars (drought tolerant S13 and drought sensitive S54) were subjected to water stress for 15 d. Water stress decreased the leaf water potential, net photosynthetic rate (PN), and stomatal conductance (gs) in both the cultivars. However, the magnitude of decline was comparatively greater in the sensitive cultivar (S54). Intercellular CO2 concentration (Ci) was unaltered during mild stress, but significantly increased at severe stress in both cultivars. The photosystem 2 activity significantly declined only at a severe stress in both cultivars. The Ci/gs ratio representing the mesophyll efficiency was greater in the tolerant cultivar S13. Involvement of stomatal and/or non-stomatal components in declining PN depended on the severity and duration of stress. However, the degree of non-stomatal limitations was relatively less in the drought tolerant cultivar. and S. Ramanjulu, N. Sreenivasulu, C. Sudhakar.
Net photosynthetic rate (PN), stomatal conductance (gS), transpiration rate (E), intercellular CO2 concentration (Ci), leaf water potential (Ψw), leaf area, chlorophyll (Chl) content, and the activities of photosynthetic carbon reduction cycle (PCR) enzymes in two mulberry (Morus alba L.) cultivars (drought tolerant Anantha and drought sensitive M-5) were studied during water stress and recovery. During water stress, PN, gS, and E declined whereas Ci increased. PN, gS, and E were less affected in Anantha than in M-5, which indicates tolerance nature of Anantha over M-5. Activities of ribulose-5-phosphate kinase, NAD- and NADP-glyceraldehyde-3-phosphate dehydrogenases, and 3-phosphoglycerate kinase decreased with increasing stress in both the cultivars. The enzyme activities less affected in tolerant (Anantha) than in sensitive cultivar (M-5) were restored after re-watering to almost initial values in both the cultivars. Re-watering of the plants led to an almost complete recovery of PN, E, and gS, indicating that a short-term stress brings about reversible effect in these two cultivars of mulberry. and S. Thimmanaik ... [et al.].
Three-month-old mulberry (Morus alba L.) cultivars (salt tolerant cv. S1 and salt sensitive cv. ATP) were subjected to different concentrations of NaCl for 12 d. Leaf area, dry mass accumulation, total chlorophyll (Chl) content, net CO2 assimilation rate (PN), stomatal conductance (gs), and transpiration rate (E) declined, and intercellular CO2 concentration (Ci) increased. The changes in these parameters were dependent on stress severity and duration, and differed between the two cultivars. The tolerant cultivar showed a lesser reduction in PN and gs coupled with a better Ci and water use efficiency (WUE) than the sensitive cultivar. and S. Giridara Kumar ... [et al.].
Three-month-old plants of mulberry (Morus alba L. cv. Kanva-2) were subjected to a drought stress by withholding water supply. As the leaf water potential (ΨW) was dropping progressively with the severity of treatment and increasing stress duration, the values of leaf area, dry mass accumulation, total chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were declined. The photosystem 2 (PS2) photochemical efficiency significantly decreased only at a severe stress treatment. The intercellular CO2 concentration (Ci) remained unaltered during a mild stress, yet it increased under moderate and severe stresses. The Ci/gs ratio reflected the mesophyll efficiency during water stress. Rewatering of the plants led to an almost complete recovery of PN, E, and gs, indicating that a short-term stress brings about reversible effects only. and S. Ramanjulu ... [et al.].