Four groups of goldfish were exposed to cadmium in a concentration of 20 mg Cd/l water under aquarium conditions. The duration of exposure was 1, 4, 7 and 15 days. It was shown that the activity of superoxide dismutase (SOD) in the red blood cells (RBC) significantly decreased after the first day of cadmium exposure. However, the SOD activity increased after 7 and 15 days of cadmium treatment. Elevated activity of catalase (CAT) was found in erythrocytes of cadmium-treated fishes after 15 days, whereas plasma GOT levels was increased after 7 and 15 days and GPT levels after 1, 4, 7 and 15 days of cadmium treatment. This was accompanied by a significant decrease of blood hemoglobin concentrations (after 15 days) and hematocrit values (after 7 and 15 days). However, the concentration of blood glucose significantly increased after 1, 4, 7 and 15 days of cadmium exposure. These results indicate that cadmium causes oxidative stress and tissue damage in the exposed fishes., R.V. Žikić, A. Š. Štajn, S. Z. Pavlović, B. I. Ognjanović, Z. S. Saičić., and Obsahuje bibliografii
Total superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) activities in erythrocytes and the glutamic acid-oxalacetic acid-transaminase (GOT, EC 2.6.1.1) and glutamic acid-pyruvic acid-transaminase (GPT, EC 2.6.1.2) activities in the plasma were measured in experimental groups of carps (Cyprinus carpio L.) exposed to cadmium in a concentration of 20 mg Cd/1 water under aquarium conditions for 6, 12, 18 and 24 hours and in control fishes. It was shown that the total activity of SOD in the erythrocytes is significantly decreased after 12, 18 and 24 hours of cadmium exposure. Increased activities of CAT (after 24 hours) in the erythrocytes and GOT and GPT in the plasma were found in cadmium-treated fishes. At the same time the concentration of blood haemoglobin and haematocrit values were significantly diminished. These results indicate that cadmium causes oxidative stress and tissue damage in the exposed fishes.
Cadmium (Cd), an environmental and industrial pollutant, poses a potential threat and affects many systems in human and animals. Although several reports on Cd toxicity were presented, the acute effect of Cd on systemic and thrombotic events was not reported so far. Cd (2.284 mg/kg) or saline (control) was injected intraperitoneally (ip), and the systemic parameters were assessed in mice. Compared to control group, acute intraperitoneal injection of Cd, in mice showed significant quickening of platelet aggregation (P<0.001) leading to pial cerebral thrombosis. Likewise, Cd exposure caused a significant increase in white blood cell numbers (P<0.05) indicating the occurrence of systemic inflammation. Also, alanine aminotransferase (ALT) (P<0.05) and creatinine (P<0.01) levels were both significantly increased. Interestingly, the superoxide dismutase activity was significantly decreased in Cd treated group compared to control group (P<0.001), suggesting the occurrence of oxidative stress. We conclude that the Cd exposure in mice causes acute thromboembolic events, oxidative stress and alter liver and kidney functions., M.A. Fahim ... [et al.]., and Obsahuje seznam literatury
Metal stress was induced in maize (Zea mays L.) by the addition to the soil of a range of concentrations of either ethylene-diamine-tetra-acetate (EDTA) or citric acid (CA) as chelating agents. Measurements were taken using a recently-developed sensor capable of plant fluorescence detection at wavelengths of 762 and 688 nm. Atmospheric oxygen absorbs radiation at these wavelengths. As such, measured fluorescence can be attributed to the plants under observation. Red/far-red (690/760 nm, R/FR) chlorophyll (Chl) fluorescence ratios were measured before addition of the chelating agents and during the month following. Significant differences were seen in the fluorescence responses of those plants for which high concentrations [≥ 30 mmol kg-1(d.m. soil)] of EDTA were added to the pots compared to those for which CA or no chelating agent was added. The plants for which high concentrations of EDTA were added also exhibited higher tissue metal concentrations and demonstrated visible signs of stress. Before signs of visual stress became apparent, R/FR Chl fluorescence ratios for metal-stressed plants were significantly different to those observed for unstressed plants. These results support the use of plant fluorescence as a potential tool for early indication of phytotoxic metal stress. and J. J. Colls, D. P. Hall.
Anthropogenic activities and improper uses of phosphate fertilizers have led to an increase in cadmium concentrations in agricultural soils. Brassinosteroids are steroid hormones that are rapidly assimilated and metabolised with beneficial roles in physiological and biochemical processes in plants. Our aim was to ascertain whether exogenous treatment with 24-epibrassinolide (EBR) can mitigate the Cd toxicity, and whether this substance can reduce the Cd accumulation in plant tissues. Furthermore, the dose response to EBR was determined following exposure to Cd in Vigna unguiculata. The experiment was a completely randomised factorial design with two concentrations of Cd (0 and 500 μM) and three concentrations of EBR (0, 50, and 100 nM). Spraying plants exposed to Cd with EBR significantly reduced the concentrations of Cd and increased nutrient contents in all tissues. The EBR treatment caused significant enhancements in leaf, root, and total dry matter. Foliar application of EBR reduced the negative effects of Cd toxicity on chlorophyll fluorescence and gas exchange parameters. Pretreatment with EBR also increased contents of pigments in plants exposed to Cd, compared with the identical treatments without EBR. Cd elevated contents of oxidant compounds, inducing cell damages, while EBR significantly decreased the concentrations of these compounds. We confirmed that EBR mitigated the negative effects related to Cd toxicity, reduced the absorption and transport of Cd, and increased the contents of essential elements. In plants exposed to Cd, the most apparent dose response was found for 100 nM EBR, with beneficial repercussions on growth, gas exchange, primary photosynthetic processes, and photosynthetic pigments, which were intrinsically connected to lower production of oxidant compounds and cell damage., L. R. Santos, B. L. Batista, A. K. S. Lobato., and Obsahuje bibliografii
The present study was devised to assess the effects of cadmium chloride (CdCl2) administration on certain andrological, endocrinological and biochemical alterations in adult male rabbits (n=24). The animals were assigned to control (n=8) and experimental (n=16) group. Experimental group was orally administered with 1.5 mg/kg body weight of CdCl2. The trials were carried out for a total of 5 weeks and blood sampling was carried out on weekly basis. A gradual decrease was noticed for body weight in the experimental group from week 1 to 5, being significantly lower in week 4 and 5 (P<0.05). A similar decremented trend was noticed for serum testosterone level being significantly lower in experimental group in week 4 and 5 (P<0.001). Significantly lower values were noticed for prolactin in experimental group in week 4 and 5 (P<0.05), than in the control. On the contrary, serum cortisol level showed a gradual increase in experimental group, from week 1 to 5, being significantly higher in week 4 and 5 (P<0.05). Regarding the biochemical attributes, all the parameters under study revealed a gradually ascending trend. Statistical significance was, however, achieved in varying weeks and at varying levels. The total protein and albumin were significantly higher in week 4 and 5 (P<0.01); alanine aminotransferase in week 2 (P<0.01), 3 (P<0.001), 4 (P<0.01) and 5 (P<0.001); aspartate aminotransferase in week 1, 2, 3, 4 and 5 (P<0.01); and alkaline phosphatase in week 1, 2 (P<0.01), 3, 4 and 5 (P<0.0001), respectively. Overall mortality rate in experimental group was 68.75 (11/16). In a nutshell, Cd exposure results in adverse effects on all physiological parameters of body and may lead to lethal consequences., S. Sajjad, H. Malik, U. Farooq, F. Rashid, H. Nasim, S. Tariq, S. Rehman., and Obsahuje bibliografii
We studied cadmium toxicity in murine hepatocytes in vitro. Cadmium effects on intracellular free Ca2+ concentration ([Ca2+]i) were assayed, using a laser scanning confocal microscope with a fluorescent probe, Fluo-3/AM. The results showed that administration of cadmium chloride (CdCl2, 5, 10, 25 μM) resulted in a dose-dependent decrease of hepatocyte viability and an elevated aspartate aminotransfe rase (AST) activity in the culture medium (p<0.05 for 25 μM CdCl2 vs. control). Significant increases of lactate dehydrogenase (LDH) activities in 10 and 25 μM CdCl2-exposed groups were observed (p<0.05 and p<0.01, respectively). A greatly decreased albumin content and a more malondialdehyde (MDA) formation also occurred after CdCl2 treatment. The Ca2+ concentrations in the culture medium of CdCl2-exposed hepatocytes were significantly decreased, while [Ca2+]i appeared to be significantly elevated (p<0.05 or p<0.01 vs. control). We found that in Ca2+-containing hydroxyethyl piperazine ethanesulfonic acid-buffered salt solution (HBSS) only, CdCl2 elicited [Ca2+]i increases, which comprised an initially slow ascent and a strong elevated phase. However, in Ca2+-containing HBSS with addition of 2-aminoethoxydiphenyl borane (2-APB), CdCl2 caused a mild [Ca 2+] i elevation in the absence of an initial rise phase. Removal of extracellular Ca2+ showed that CdCl2 induced an initially slow [Ca2+]i rise alone without being followed by a markedly elevated phase, but in a Ca2+-free HBSS with addition of 2-APB, CdCl2 failed to elicit the [Ca2+]i elevation. These results suggest that abnormal Ca2+ homeostasis due to cadmium may be an important mechanism of the development of the toxic effect in murine hepatocytes. [Ca2+]i elevation in acutely cadmium-exposed hepatocytes is closely related to the extracellular Ca2+ entry and an excessive release of Ca2+ from intracellular stores., S. S. Wang, L. Chen, S. K. Xia., and Obsahuje bibliografii a bibliografické odkazy
Maize (Zea mays L.) seedlings were grown in nutrient solution culture containing 0, 5, and 20 μM cadmium (Cd) and the effects on various aspects of photosynthesis were investigated after 24, 48, 96 and 168 h of Cd treatments. Photosynthetic rate (PN) decreased after 48 h of 20 μM Cd and 96 h of 5μM Cd addition, respectively. Chl a and total Chl content in leaves declined under 48 h of Cd exposure. Chl b content decreased on extending the period of Cd exposure to 96 h. The maximum quantum efficiency and potential photosynthetic capacity of PSII, indicated by Fv/Fm and Fv/Fo, respectively, were depressed after 96 h onset of Cd exposure. After 48 h of 5μM Cd and 24 h of 20 μM Cd treatments, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in the leaves started to decrease, respectively. We found that the limitation of photosynthetic capacity in Cd stressed maize leaves was associated with Cd toxicity on the light and the dark stages. However, Cd stress initially reduced the activities of Rubisco and PEPC and subsequently affected the PSII electron transfer, suggesting that the Calvin cycle reactions in maize plants are the primary target of the Cd toxic effect rather than PSII. and H. Wang ... [et al.].
Tomato (Lycopersicon esculentum Mill. cv. Pearson) plants were grown in growth chambers for 25 days with cadmium (Cd) and then exposed briefly to ozone (O3). Gas exchange, chlorophyll a fluorescence, and pigment composition were analysed in leaves at the end of the treatment to assess the effects of a single pollutant and their combination on photosynthesis. The CO2 assimilation rate was dramatically reduced in plants subjected to the combined treatment, while the single effect of Cd appeared less severe than that of O3. The decline of CO2 photoassimilation found in all
O3-exposed plants was attributed to both stomatal and nonstomatal limitations. Tomato plants seemed to detoxify Cd to a great extent, but this resulted in growth suppression. In response to O3 exposure, the plants protected their photosystems by heat dissipation of excess energy via the xanthophyll cycle. Cd combined with O3 affected adversely this cycle resulting in an increase in photosynthetic performance under the same experimental light conditions., E. Degl’Innocenti, A. Castagna, A. Ranieri, L. Guidi., and Obsahuje bibliografii
The present study was conducted to study the effect of 24-epibrassinolide (EBL) on changes of plant growth, net photosynthetic rate, carbonic anhydrase (E.C. 4.2.1.1) and nitrate reductase (E.C.1.6.6.1) activities in the leaves of Raphanus sativus L. under the influence of cadmium (Cd) stress. Cd reduced plant growth, photosynthetic pigment levels, net photosynthetic rate and the activities of carbonic anhydrase and nitrate reductase. However seed application of EBL reduced the toxic effect of Cd on plant growth, pigment content, photosynthesis and enzyme activities. The studies clearly demonstrated the ameliorating effect of 24-epibrassinolide in mitigating the toxicity of Cd in plants. and S. Anuradha, S. Seeta Ram Rao.