a1_Artemisia annua L. produces a compound called artemisinin that is a potent anti-malarial compound. However concentration of artemisinin within the plant is typically low (less than 0.8% of dry mass) and currently supply of the drug by the plant does not meet world demand. This investigation was carried out to determine whether high intensity light treatment would increase production of artemisinin in leaves of A. annua. Photoinhibition (14%) was induced in leaves of A. annua when they were subjected to 6 h of high-intensity light [2,000 μmol(photon) m-2 s-1]. Maximum photochemical efficiency of PSII showed a recovery of up to 95% within 24 h of light induced inhibition. During the light treatment, photochemical efficiency of PSII in leaves of the high-intensity light-treated plants was 38% lower than for those from leaves of plants subjected to a low-intensity-light treatment of 100 μmol(photon) m-2 s-1. Nonphotochemical quenching of excess excitation energy was 2.7 times higher for leaves treated with high-intensity light than for those irradiated with low-intensity light. Elevation in oxidative stress in irradiated leaves increased presence of reactive oxygen species (ROS) including singlet oxygen, superoxide anions, and hydrogen peroxide. Importantly, the concentration of artemisinin in leaves was two-fold higher for leaves treated with high-intensity light, as compared to those treated with low-intensity light. These results indicate that A. annua responds to high irradiance through nonphotochemical dissipation of light energy yet is subject to photoinhibitory loss of photosynthetic capacity. It can be concluded that A. annua is capable of rapid recovery from photoinhibition caused by high light intensity., a2_High light intensity also induced oxidative stress characterized by increased concentration of ROS which enhanced the content of artemisinin. Such a light treatment may be useful for the purpose of increasing artemisinin content in A. annua prior to harvest., M. E. Poulson, T. Thai., and Obsahuje seznam literatury
Fluctuating asymmetry (FA) of bilaterally symmetrical organisms has been introduced as a promising indicator of environmental stress. Stress factors reported to contribute to developmental stability include inbreeding and the presence of resistance genes. In the current study we examined the effect of stress derived from high developmental temperatures, resistance genes and low genetic variation on life history variables and wing FA in Culex pipiens mosquitoes. Three strains were compared: two inbred laboratory strains sharing a similar genetic background but differing in that one strain contained organophosphate (OP) resistance genes, and a third strain that was an outbred OP resistant field strain recently collected from India. There were no strong and general trends that suggested that the OP resistant lab strain was less fit than the OP susceptible strain, although there were some specific among strain differences for some treatments. Fluctuating asymmetry (FA) of wing traits was higher in the laboratory strains than the field strain, suggesting that inbreeding may cause elevated FA in the study species. There was no evidence that the resistance genes were associated with increased wing FA. Wing FA increased with increasing developmental temperature in females, but the association was less strong in males. There was a significant difference between the sexes in this respect. The results are discussed with reference to the value of FA as a biomonitor of environmental stress.
The effect of drought stress on energy dissipation and antioxidant enzyme system in two sweet sorghum inbred lines (M-81E and Roma) was investigated. Results showed that the germination indicator increased more in M-81E than that in Roma under rehydration. Under drought stress, both the maximal photochemical efficiency of PSII (Fv/Fm) and oxidoreductive activity (ΔI/I0) of Roma decreased more than those in M-81E. Relative to Fv/Fm, the ΔI/I0 decreased markedly, which indicated that PSI was more sensitive to drought stress than PSII. Increases in the reduction state of QA (1-qp), nonphotochemical quenching (NPQ) and minimal fluorescence yield of the dark-adapted state (F0) were greater in Roma than those in M-81E; meanwhile, the H2O2 content was lower in M-81E than that in Roma. Our results suggested that the photoinhibition might be related to the accumulation of reactive oxygen species (ROS). The antioxidant enzyme system and energy dissipation of M-81E could respectively increase drought tolerance by eliminating ROS and excess energy more efficiently than that of Roma., Y. Y. Guo, S. S. Tian, S. S. Liu, W. Q. Wang, N. Sui., and Obsahuje bibliografii
The photosynthetic characterization of Populus euphratica and their response to increasing groundwater depth and temperature were analyzed based on net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE) and stomatal limitation (Ls) measured by a portable gas-exchange system (LI-6400) in the lower reaches of the Tarim River. Light-response curves were constructed to obtain light-compensation and light-saturation points (LCP and LSP), maximum photosynthetic rates (Pmax), quantum yields (AQY), and dark respiration rates (RD). The growth condition of P. euphratica, soil moisture, and groundwater depth in the plots were analyzed by field investigation. The results showed that the growth condition and photosynthetic characterization of P. euphratica were closely related to groundwater depth. The rational groundwater depth for the normal growth and photosynthesis was 3-5 m, the stress groundwater depth for mild drought was more than 5 m, for moderate drought was more than 6 m, for severe drought was more than 7 m. However, P. euphratica could keep normal growth through a strong drought resistance depended on the stomatal limitation and osmotic adjustment when it faced mild or moderate drought stress, respectively, at a normal temperature (25°C). High temperature (40°C) significantly reduced PN and drought stress exacerbated the damage of high temperature to the photosynthesis. Moreover, P. euphratica would prioritize the resistance of high temperature when it encountered the interaction between heat shock and water deficit through the stomata open unequally to improve the transpiration of leaves to dissipate overheating at the cost of low WUE, and then resist water stress through the osmotic adjustment or the stomatal limitation. and H. H. Zhou ... [et al.].
Productivity of most improved major food crops showed stagnation in the past decades. As human population is projected to reach 9-10 billion by the end of the 21st century, agricultural productivity must be increased to ensure their demands. Photosynthetic capacity is the basic process underlying primary biological productivity in green plants and enhancing it might lead to increasing potential of the crop yields. Several approaches may improve the photosynthetic capacity, including integrated systems management, in order to close wide gaps between actual farmer’s and the optimum obtainable yield. Conventional and molecular genetic improvement to increase leaf net photosynthesis (P N) are viable approaches, which have been recently shown in few crops. Bioengineering the more efficient CC4 into C3 system is another ambitious approach that is currently being applied to the C3 rice crop. Two under-researched, yet old important crops native to the tropic Americas (i.e., the CC4 amaranths and the C3-CC4 intermediate cassava), have shown high potential P N, high productivity, high water use efficiency, and tolerance to heat and drought stresses. These physiological traits make them suitable for future agricultural systems, particularly in a globally warming climate. Work on crop canopy photosynthesis included that on flowering genes, which control formation and decline of the canopy photosynthetic activity, have contributed to the climate change research effort. The plant breeders need to select for higher P N to enhance the yield and crop tolerance to environmental stresses. The plant science instructors, and researchers, for various reasons, need to focus more on tropical species and to use the research, highlighted here, as an example of how to increase their yields., M. A. El-Sharkawy., and Obsahuje seznam literatury
Sparse-elm grassland is the remarkable landscape of Hunshandak Sandland in Inner Mongolia Autonomic Region of China. Maximum quantum efficiency (Fv/Fm) of 99 native plant species (85 grasses, 11 shrubs, and 3 trees) of different plant functional Types (PFTs) distributed in fixed sand dune, lowland, and wetland was investigated. Deep-rooted plant species (tree, shrub, and perennial grass) had higher Fv/Fm values than the shallow-rooted species (annual grasses), suggesting that soil drought is the major environmental stress. Annual C4 grasses had higher Fv/Fm values than annual C3 or CAM ones, indicating that C4 photosynthesis is more ecologically adaptive than CAM and C3 grasses. According to the habitats with annual C3 grass distribution, Fv/Fm values were in the order of fixed dune>lowland>wetland, suggesting that salt and pH value may enhance irradiance or heat stress for those distributed in pickled and watery habitats. Based on such characteristics, Ulmus pumila, Salix gordejevii, Caragana microphylla, Agriophyllum pungens, and Agropyron cristatum are recommended as ideal species for ecological restoration in degraded sand-land ecosystems. and Yong-Geng Li ... [et al.].