With japonica rice 98-08, indica hybrids Shanyou 63, Gangyou 881, and X07S/Zihui 100, and sub-species hybrid Peiai 64S/9311 as materials, chlorophyll (Chl) content, Chl a fluorescence parameters, and membrane lipid peroxidation in flag leaf were measured at late developmental stages under natural conditions. Fv/Fm, qP, ΦPS2, and electron transport rate gradually decreased while qN increased conversely. Excessive photon energy led to the accumulation of active oxygen (O2-), H2O, malonyldialdehyde, and products of membrane lipid peroxidation, and resulted in reduced Chl content and early ageing subsequent to the photooxidation during flag leaf senescence. There was obvious diversification of these parameters among rice cultivars. In comparison with japonica cv. 98-08 (tolerant to photooxidation), Fv/Fm decreased in indica cv. Shanyou 63 (susceptible to photooxidation) with greater accumulation of active oxygen and a sharp drop in Chl content, which resulted in "yellowish" early ageing, and affected the filling and setting of rice grains. The mechanism for premature ageing in indica rice was related to irradiance and temperature at filling stages. On a sunny day at above 25 °C, the reaction centre of photosystem 2 (PS2) exhibited a dynamic change on reversible inactivation. Under the intense irradiance at noon, PS2 function in indica rice exhibited obvious down-regulation and photoinhibition. Under intense irradiance with lowered temperatures, PS2 resulted in photo-damage and early ageing, related to the degradation of PS2-D1 protein and the inhibition of endogenous protection systems such as the xanthophyll cycle and enzymes scavenging active oxygen. Hence for high-yield breeding, based on a good plant-type and utilising heterosis and tolerance of photooxidation, the selection of japonica rice or a sterile line with the japonica genotype as female is a strategy worthy of consideration. and Demao Jiao, Benhua Ji, Xia Li.
We studied changes in the chlorophyll (Chl) fluorescence components in chilling-stressed sweet potato (Ipomoea batatas L. Lam) cv. Tainung 57 (TN57, chilling-tolerant) and cv. Tainung 66 (TN66, chilling-susceptible). Plants under 12-h photoperiod and 400 µmol m-2 s-1 irradiance at 24/20 °C (day/night) were treated by a 5-d chilling period at 7/7 °C. Compared to TN66, TN57 exhibited a significantly greater basic Chl fluorescence (F0), maximum fluorescence (Fm), maximum fluorescence yield during actinic irradiation (Fm' ), and the quantum efficiency of electron transport through photosystem 2, PS2 (ΦPS2). Chilling stress resulted in decrease in the potential efficiency of PS2 (Fv/Fm), ΦPS2, non-photochemical fluorescence quenching (NPQ), non-photochemical quenching (qN), and the occurrence of chilling injury in TN66. Chilling increased the likelihood of photoinhibition, characterized by a decline in the Chl fluorescence of both cultivars, and photoinhibition during low temperature stress generally occurred more rapidly in TN66. and K. H. Lin, W. C. Hwang, H. F. Lo.
The lichens Parmelia quercina, Parmelia sulcata, Evernia prunastri, Hypogymnia physodes, and Anaptychia ciliaris were exposed to ozone (O3) in controlled environment cuvettes designed to maintain the lichens at optimal physiological activity during exposure. Measurements of gas exchange, modulated chlorophyll (Chl) fluorescence, and pigment analysis were conducted before and after exposure to 300 mm3 (O3) m-3, 4 h per d for 14 d. No changes in the efficiency of photosystem 2 (PS2) photochemistry, the reduction state of QA, or the electron flow through PS2, measured by Chl fluorescence, were detected in any of the five lichen species studied. Additionally, neither photosynthetic CO2 assimilation nor xanthophyll cycle activity or photosynthetic pigment concentration were affected by high O3 concentrations. Thus the studied lichen species have significant capacities to withstand oxidative stresses induced by high concentration of O3. and A. Calatayud, P. J. Temple, E. Barreno.
Chlorophyll (Chl) a fluorescence measurements as evaluators of plant freezing tolerance are frequently insufficiently sensitive to detect the early metabolic changes that are initiated following exposure to freezing temperatures. Using cold-acclimated winter wheat, I analysed the polyphasic transience (from 50 µs to 1 s) of Chl a fluorescence. This enabled detailed studies of the progressive energy flows and efficiencies within the photosystem 2 (PS2) complex that ensue following initial exposure to freezing temperatures right through to the plant recovery stage. The initial consequences of mild frosts that may cause primary damage involve a disturbance to the energy transfer subsequent to QA (the primary quinone electron acceptor of PS2). Lower freezing temperatures, on the other hand, may deter energy flow between the PS2 reaction centre (RC), Chl, and QA. All primary damage could only be repaired partially. Further freezing-triggered dysfunction of the electron transfer between the PS2 RCs and QA was connected with secondary damage that could lead to PS2 deactivation. Both primary and secondary freezing damages were reflected in decreased PIABS, the Performance Index based on equal absorption that characterizes all energy bifurcations in PS2. PIABS also differentiated cultivars with contrasting freezing-tolerance either subsequent to the onset of freezing or during the recovery stage. In contrast, the potential quantum yield of PS2 (Fv/Fm), which characterizes efficiency of energy trapping in the PS2 RCs, was only different in cultivars with contrasting freezing-tolerance during the recovery stage.
Sun-and shade-adapted plants of Ailanthus altissima utilized thermal-dissipative photoprotection (NPQ) across a range of photosynthetic photon flux densities (PPFD), with higher NPQ and lower maximum quantum yield of photosystem 2 photochemistry (Fv/Fm) in sun-adapted individuals, suggesting increased engagement of antennae-based quenching. Photosynthetic quantum requirements (Qreq; number of photons per CO2) were similar in sun and shade plants, but were low and comparable to forest understory species. Diurnal measurements showed that PPFDs in both habitats were consistently above photosynthetic compensation irradiance, and frequently exceeded saturating values. In addition, sun- and shade-adapted individuals possessed stomata that tracked short-term fluctuations in PPFD. Thus A. altissima may be unique in that it couples high, shade-plant like photosynthetic efficiency with high photosynthetic capacity in high-irradiance, while stomatal attributes that optimize water use efficiency are maintained in the shade. These features may contribute to success of A. altissima in establishing in disturbance-prone urban systems, and facilitate its spread into more PPFD-limited and competitive natural ecosystems.
Chlorophyll fluorescence parameters (Chl FPs) derived from the slow (long-term) induction kinetics of modulated Chl a fluorescence are reviewed and analysed with respect to their application in photosynthesis research. Only four mutually independent Chl FPs, calculated from values of five essential Chl fluorescence (ChlF) yields, are distinguished as the basic ones. These are: the maximum quantum yield of PS2 photochemistry (ΦPO), the photochemical quenching of variable ChlF (qP), the non-photochemical quenching of variable ChlF (qN), and the relative change of minimum ChlF (qO). ΦPO refers to the dark-adapted state of a thylakoid membrane, qP, qN and qO characterise the light-adapted state. It is demonstrated that all other Chl FPs can be determined using this quartet of parameters. Moreover, three FPs related to the non-radiative energy dissipation within thylakoid membranes are evaluated, namely: the non-photochemical ChlF quenching (NPQ), the complete non-photochemical quenching of ChlF (qCN), and the effective quantum yield of non-photochemical processes in PS2 (ΦN). New FPs, the total quenching of variable ChlF (qTV) and the absolute quenching of ChlF (qA) which allow to quantify co-action of the photochemical and non-photochemical processes during a light period are defined and analysed. The interpretation of Chl FPs and recommendations for their application in the photosynthesis research are also given. Some alternative FPs used in the laboratory practice have only an approximate character and can lead to incorrect conclusions if applied to stressed plants. They are reviewed and compared with the standard ones. All formulae and conclusions discussed herein are verified using experimental values obtained on young seedlings of the Norway spruce (Picea abies [L.] Karst.).
In Huanshandak Sandland, China, net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), intercellular CO2 concentration (Ci), water use efficiency (WUE), photochemical efficiency of photosystem 2 (Fv/Fm), and leaf nitrogen content were compared for Hedysarum fruticosum var. mongolicum (H.f.m.), a nitrogen fixing shrub, and Salix gordejevii (S.g.), a nitrogen non-fixing shrub. PN, E, and gs of the two shrubs were similar in trends, i.e. two peaks were observed in diurnal courses. However, except Ci, other parameters of H.f.m. were higher during the measured days than those of S.g. The midday depression of PN was mainly due to decrease in stomata conductance and to reduction of Fv/Fm at midday. The higher PN of H.f.m. was consistent with the higher leaf N content and there was a positive relation between them. In addition, several C4 traits were found in H.f.m., i.e. high saturation irradiance and WUE, low dark respiration rate, and Ci, which partly resulted in higher PN. This seems to indicate that the C3 plant H.f.m. may have C4 photosynthesis pathway or C4 enzymes. and S. L. Niu ... [et al.].
Photosynthetic characteristics of two hybrid rice combinations, Peiai 64S/E32 and Shanyou 63, were compared at the panicle differentiation stage. As compared with Shanyou 63, the new combination Peiai 64S/E32 showed a significantly higher net photosynthetic rate (PN), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), and photorespiratory rate (RP) as well as leaf chlorophyll content, but a significantly lower dark respiration rate (RD) and compensation irradiance (Ic). It also showed a slightly higher photochemical efficiency (Fv/Fm and ΔF/Fm') of photosystem 2, a lower non-photochemical quenching (qN), and a similar CO2 compensation concentration (Γ) as compared to Shanyou 63. and Hua Jiang ... [et al.].
Growth, net photosynthetic rate (PN), chlorophyll fluorescence induction kinetics, and stromal fructose-1,6-bisphosphatase (sFBPase) in annual legumes native to the Mediterranean region, two clovers (Trifolium subterraneum L. ssp. oxaloides Nyman cv. Clare and T. michelianum Savi cv. Giorgia) and two Medicago species (M. polymorpha L. cv. Anglona and M. truncatula Gaertn. cv. Paraggio), shifted from 20 to 10 °C for 1 d or developed at 10 °C were compared with controls kept at 20 °C. Cold development produced a larger stimulation of growth in the clover cv. Giorgia and the Medicago cv. Paraggio. Transferring plants to low temperatures affected PN relatively less in clovers than in Medicago plants. Development at 10 °C relieved the inhibition of photosynthesis in Giorgia and Paraggio, but not in Clare and Anglona, which correlated with increases in the maximum rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO (Vcmax), and the photon-saturated rate of electron transport (Jmax). In Medicago, transfer from high to low temperature inhibited photosynthesis in a lesser extent in Anglona than in Paraggio, which showed severe limitations at level of Vcmax and Jmax. Development at 10 °C in Paraggio produced an efficient photosynthetic cold acclimation, this being associated with a two-fold increase of quantum yield of photosystem 2 electron transport (ΔF/F'm) and with the activity of sFBPase. By contrast, Anglona showed an irreversible inhibition of PN coupled with the reduction of carbon metabolism by impairment of Calvin cycle enzyme activities such as RuBPCO and sFBPase, resulting in a poor cold acclimation of photosynthesis in this cultivar. and M. C. Antolín, M. Hekneby, M. Sánchez-Díaz.
The epiphytic fern Platycerium bifurcatum grows in different habitats characterized by drought and high irradiance stress. The plant shows diurnal malate oscillations, indicative for CAM expression only in cover leaves, but not in sporotrophophyll. In P. bifurcatum cover leaves exposed to high irradiance and desiccation, the decrease in both CO2 assimilation (PN) and stomatal conductance (gs) was accompanied with occurrence of diurnal malate oscillations. Exogenously applied abscisic acid (ABA) induced the decrease in PN and gs, but no clear change in malate oscillations. The measurements of the maximum quantum efficiency of photosystem 2 (Fv/Fm) under high irradiance showed distinct photoinhibition, but no clear changes in Fv/Fm due to desiccation and ABA-treatment were found. and G. Rut ... [et al.].