The lichens Parmelia quercina, Parmelia sulcata, Evernia prunastri, Hypogymnia physodes, and Anaptychia ciliaris were exposed to ozone (O3) in controlled environment cuvettes designed to maintain the lichens at optimal physiological activity during exposure. Measurements of gas exchange, modulated chlorophyll (Chl) fluorescence, and pigment analysis were conducted before and after exposure to 300 mm3 (O3) m-3, 4 h per d for 14 d. No changes in the efficiency of photosystem 2 (PS2) photochemistry, the reduction state of QA, or the electron flow through PS2, measured by Chl fluorescence, were detected in any of the five lichen species studied. Additionally, neither photosynthetic CO2 assimilation nor xanthophyll cycle activity or photosynthetic pigment concentration were affected by high O3 concentrations. Thus the studied lichen species have significant capacities to withstand oxidative stresses induced by high concentration of O3. and A. Calatayud, P. J. Temple, E. Barreno.
We compared the responses of wild type (WT) and three mutants including npq1 (lutein-replete and violaxanthin deepoxidase-deficient), lut2 (lutein-deficient), and lut2-npq1 (double mutant) to high irradiance (HI, 2 000 μmol m-2 s-1) at both low (LT, 5 °C) and room (25 °C) temperature. Xanthophyll-dependent energy dissipation was highest in the WT, followed by the lut2, npq1, and npq1-lut2. At 25 °C the relative stress tolerance expressed by Fv/Fm was consistent with the energy dissipation capacity for the first 2 h of treatment. After 3-4 h, the Fv/Fm levels in lut2 and npq1 converged. Under combined LT and HI the relative tolerance sequence was in contrast to the energy dissipation capacity being WT > npq1> lut2 > lut2-npq1. There were little or no significant change in the contents of xanthophylls and carotenes or the chlorophyll (Chl) a/b ratio in any of the materials. Thus lutein (L) substitution possibly alters the conformation/organisation of L binding proteins to enhance damage susceptibility under HI at LT. The enhanced vulnerability is not compensated for the energy dissipation capacity in the lut2 background at LT. and Chang-Lian Peng, A. M. Gilmore.
We compared photoinhibition sensitivity to high irradiance (HI) in wild-type barley (wt) and both its chlorina f104-nuclear gene mutant, that restricts chlorophyll (Chl) a and Chl b synthesis, and its f2-nuclear gene mutant, that inhibits all Chl b synthesis. Both Fv/Fm and ΦPS2 decreased more significantly in f2 than f104 and wt with duration of HI exposure. Chl degraded more rapidly in the f2 than in either f104 or wt. Most sensitivity to photoinhibition was exhibited for f2, whereas there was little difference in response to HI between the f104 and wt. The highest de-epoxidation (DES) value at every time point of exposure to HI was measured for f2, whereas the wt had the lowest value among the three strains. There were two lifetime components resolved for the conversion of violaxanthin (V) to zeaxanthin plus antheraxanthin (Z + A). The most rapid lifetime was around 6 min and the slower lifetime was >140 min, in both the mutants and wt. However, the wt and f104 both displayed larger amplitudes of both de-epoxidation lifetimes than f2. The difference between the final de-epoxidation state (DES = [Z + A]/[V + A + Z]) in the light compared to the dark expressed as ΔDES for wt, f104, and f2 was 0.630, 0.623, and 0.420, respectively. The slow lifetime component and overall larger ΔDES in the wt and f104 correlated with more photoprotection, as indicated by relatively higher Fv/Fm and ΦPS2, compared to the f2. Hence the photoprotection against photoinhibition has no relationship with the absolute DES value, but there is a strong relationship with de-epoxidation rate and relative extent or ΔDES. and Chang-Lian Peng ... [et al.].
Photodynamic and photoprotective responses at different irradiances were investigated in transgenic rice (Oryza sativa) expressing Bradyrhizobium japonicum 5-aminolevulinic acid synthase (ALA-S). With high irradiance (HI) of 350 µmol m-2 s-1, transgenic lines P5 and P14 showed a decrease in contents of chlorophyll (Chl) and the chloroplast-encoded gene psbA mRNA, whereas a decrease in light-harvesting Chl-binding proteins was observed only in P14. These effects were not observed in the wild-type (WT) line treated with HI or all of the lines treated with low irradiance (LI) of 150 µmol m-2 s-1. HI resulted in a greater decrease in the quantum yield of photosystem 2 and a greater increase in non-photochemical quenching (NPQ) in the transgenic lines, particularly in P14, compared to WT. Photoprotective zeaxanthin contents increased at HI, even though carotenoid contents were lower in the transgenic lines compared to WT. When exposed to HI, superoxide dismutase greatly increased in transgenic lines P5 and P14, but peroxidase and glutathione reductase increased only in P14, in which more photodynamic damage occurred. Thus the greater expression of ALA-S in the transgenic plants developed the stronger protective functions, i.e. the increased values of NPQ and zeaxanthin, as well as more photodynamic reactions, i.e. decreased photosynthetic component and efficiency, in the photosynthetic complexes. However, the photodynamic reactions indicate that the antioxidant capacity was insufficient to cope with the severe stress triggered by photoactive porphyrins in the transgenic rice expressing ALA-S. and S. Jung ... [et al.].
Two cultivars of Capsicum annuum L. were acclimated for 5 d at sub-optimal temperature (14 °C) and irradiance of 250 µmol m-2 s-1. This cold-hardening resulted in some reduction in the extent of photoinhibition during an 8 h exposure to high irradiance at 4 °C. Obvious differences were observed between non-hardened leaves (NHL) and cold-hardened leaves (CHL) in the recovery under low irradiance at room temperature. The CHL of both cultivars recovered faster than NHL, especially during the initial fast phase of recovery. Compared with NHL, the total content of carotenoids (Cars), based on chlorophyll, Chl (a+b), and the proportions of xanthophyll cycle pigments referred to total Cars increased in CHL, mainly due to an increase of violaxanthin (V) + antheraxanthin (A) + zeaxanthin (Z) content per mol Chl (a+b). Faster development and a higher non-photochemical quenching (NPQ) of Chl fluorescence, related to a stronger deepoxidation of the larger xanthophyll cycle pool in NHL, could act as a major defence mechanism to reduce the formation of reactive oxygen species during severe chilling. This is suggested by higher content of Z or Z+A in photoinhibition as well as by its rapid decline during the initial fast phase of recovery. In contrast to the chilling-sensitive cv. 0004, the chilling-tolerant cv. 1141 did more easily acclimate its photosynthetic apparatus to low temperatures. and Peng Liu ... [et al.].
High irradiance (HI) effects on xanthophyll cycle pigments (XCP) and activity of violaxanthin de-epoxidase (VDE) in terms of de-epoxidation index (DEI) were studied in soybean calli. The calli from the hypocotyl segments of 5-d seedlings were induced on a solid (1.1 % agar) MS medium (pH 5.8) supplemented with 4.52 μM 2,4-dichloro-phenoxyacetic acid, 2.32 μM kinetin, and 3 % sucrose. After a 30 d cultivation, the green calli were irradiated for 24 h with "white light" (HI, 1 300 μmol m-2 s-1) and VDE was isolated from the photosystem 2 (PS2) particles. In the control (0 h irradiation) callus, the reaction of PS2 particles with VDE in the presence or absence of Tween 20 resulted in the decrease of VIO content and the increase of ZEA content. In the 24 h HI-callus, the reaction of PS2 particles in the absence of VDE led to the decrease of VIO and ANT contents and increase of ZEA content. In the control, DEIs in the presence of VDE with or without 0.1 %Tween 20 (1.04 and 1.06, respectively) were significantly higher than the DEI (0.76) in the absence of VDE. In the HI-callus, DEIs in the presence of VDE with or without 0.1 %Tween 20 (0.98 and 0.96, respectively) were similar to that (1.03) in the absence of VDE. and D. M. Pandey ... [et al.].
The mechanistic basis for protection of exogenous ascorbate against photoinhibition at low temperature was examined in leaves of rice (Oryza sativa L.). Exposure of intact leaves to chilling temperature resulted in a drastic decrease in the speed of development of non-photochemical fluorescence quenching (NPQ). This was related to the low temperature-imposed restriction on the formation of the fast relaxing component of NPQ (qf). Feeding with 20 mM ascorbate markedly increased the rate of qf development at chilling temperature due primarily to the enhanced rate of zeaxanthin (Z) formation. On the other hand, ascorbate feeding had no influence on photosystem 2 (PS2)-driven electron flow. The reduced state of the PS2 primary electron acceptor QA decreased in ascorbate-fed leaves exposed to high irradiance at chilling temperature owing to the increased Z-associated thermal energy dissipation in the light-harvesting antenna system of PS2. Furthermore, ascorbate feeding increased the photosynthetic apparatus of rice leaves to resist photoinhibition at low temperature. The protective effect of exogenous ascorbate was fully accounted for by the enhanced xanthophyll cycle activity. and C.-C. Xu ... [et al.].
In a chlorophyll(Chl)-deficient ch5 mutant of Arabidopsis thaliana the thylakoid membrane of which is more loosely arranged than that of the wild type we characterized the xanthophyll cycle (VAZ cycle) components (violaxanthin - V, antheraxanthin - A and zeaxanthin - Z) in comparison with the wild type grown under three low irradiances. As the irradiance increased from 30 to 250 pmol m'^ s'i, the total amount of components of the VAZ cycle decreased in both biotypes, but those of the ch5 mutant decreased more slowly than did those of the wild type. In both biotypes, the relative amoímts of V and A decreased as the irradiance increased, and that of Z increased, but the increase and decrease in the ch5 mutant was slower than in the wild type. The epoxidation index showed that the VAZ cycle operated at a similar efficiency in both biotypes (between 30 and 250 pmol m‘2 s'*), but that the ch5 mutant worked at a capacity 3.5-13.5 % lower than did the wild type, depending on the irradiance. Thus in Chl-deficient mutants, the VAZ cycle operates at a lower capacity than in the wild type, and the mutants are more sensitive to the changes in irradiance.
Changes in the activities of enzymes involved in scavenging active oxygen species were followed after exposing bean seedling leaves (Phaseolus vulgaris L.) to various cross stresses of irradiance and temperature. The activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (AsAPOD, EC 1.11.1.11) increased to different extent with prolonged irradiation of the leaves, and were stimulated by high temperature (HT). The activity of catalase (CAT, 1.11.1.6) decreased when exposed to strong irradiance (HI), and the decrease was further exacerbated when HI was combined with HT. CAT activity was more sensitive to HT than to HI. Ascorbate (AsA) content slightly decreased and then increased during the treatment of HI, but decreased under the cross stress of HI and HT. On the contrary, glutathione (GSH) content increased all the time during various treatments of irradiance and temperature. The increase in the combined stress was even more pronounced. Irradiance is the major reason in triggering the operation of xanthophyll cycle, which was difficult to be started by HT. The antioxidant systems tended to be inactivated with prolonged exposure to the cross stress of HI and HT. The de-expoxidated state of xanthophyll cycle, however, was increasing all the time, which indicated that the zeaxanthin-dependent thermal dissipation was one major energy dissipation pathway during the cross stress of HI and HT. and Liang Ye, Hui-yuan Gao, Qi Zou.
In clusterbean leaves UV-B radiation caused a reduction in contents of chlorophylls and carotenoids and in the efficiency of photosystem 2 photochemistry. The degree of damage was reduced when UV-A accompanied the UV-B radiation. This indicates the counteracting effect of UV-A radiation against UV-B-induced impairment. and S. Gartia ... [et al.].