Winter wheat is a grass species widely planted in northern and central China, where the increase of aerosols, air pollutants and population density are causing significant reduction in solar irradiance. In order to investigate the adaptation of winter wheat (Triticum aestivum L., cv. Yangmai 13) to low irradiance conditions occurring in the downstream plain of the Yangtze River (China), plants were subjected to four solar irradiance treatments (100%, 60%, 40%, and 20% of environmental incident solar irradiance). Significant increases in chlorophyll (Chl) and xanthophyll (Xan) pigments, and decreases in Chl a/b and Xan/Chl ratios were observed in plants under low light. Light-response curves showed higher net photosynthetic rates (PN) in fully irradiated plants, that also showed a higher light-compensation point. Shaded plants maintained high values of minimal fluorescence of dark-adapted state (F0) and maximum quantum efficiency of PSII photochemistry (Fv/Fm) that assess a lower degree of photoinhibition under low light. Reduced irradiance caused decreases in effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and nonphotochemical quenching coefficient (qN), and the promotion of excitation pressure of PSII (1 - qP). The activities of the antioxidant enzymes superoxide dismutase and peroxidase were high under reduced light whereas no light-dependent changes in catalase activity were observed. Thiobarbituric acid reactive species content and electrolyte leakage decreased under shaded plants that showed a lower photooxidative damage. The results suggest that winter wheat cv. Yangmai 13 is able to maintain a high photosynthetic efficiency under reduced solar irradiance and acclimates well to shading tolerance. The photosynthetic and antioxidant responses of winter wheat to low light levels could be important for winter wheat cultivation and productivity. and Y. Zheng ... [et al.].
Chlorophyll (Chl) a fluorescence measurements as evaluators of plant freezing tolerance are frequently insufficiently sensitive to detect the early metabolic changes that are initiated following exposure to freezing temperatures. Using cold-acclimated winter wheat, I analysed the polyphasic transience (from 50 µs to 1 s) of Chl a fluorescence. This enabled detailed studies of the progressive energy flows and efficiencies within the photosystem 2 (PS2) complex that ensue following initial exposure to freezing temperatures right through to the plant recovery stage. The initial consequences of mild frosts that may cause primary damage involve a disturbance to the energy transfer subsequent to QA (the primary quinone electron acceptor of PS2). Lower freezing temperatures, on the other hand, may deter energy flow between the PS2 reaction centre (RC), Chl, and QA. All primary damage could only be repaired partially. Further freezing-triggered dysfunction of the electron transfer between the PS2 RCs and QA was connected with secondary damage that could lead to PS2 deactivation. Both primary and secondary freezing damages were reflected in decreased PIABS, the Performance Index based on equal absorption that characterizes all energy bifurcations in PS2. PIABS also differentiated cultivars with contrasting freezing-tolerance either subsequent to the onset of freezing or during the recovery stage. In contrast, the potential quantum yield of PS2 (Fv/Fm), which characterizes efficiency of energy trapping in the PS2 RCs, was only different in cultivars with contrasting freezing-tolerance during the recovery stage.
Drought was induced in chickpea (Cicer arietinum L.) genotypes (ChK 3226 and ILC 3279) differing in yield capacity. Water stress (S1, RWC around 55-50%; S2, RWC ≤ 40%) drastically reduced stomatal conductance (g s) and net photosynthetic rate (PN) in both genotypes. ILC 3279 showed greater photosynthetic capacity
(Amax) decreases. Maximum PSII photochemical efficiency (Fv/Fm), photochemical quenching (qP), total chlorophylls (Chls) and carotenoids (Cars) content showed stability in both genotypes under stress, but in S2 ILC 3279 presented an increase in basal fluorescence (F0) and a greater reduction in estimation of quantum yield of linear electron transport (Φe) than ChK 3226. Membrane damage evaluated by electrolyte leakage occurred earlier and was greater in ILC 3279. It also presented a decrease of total fatty acids (TFA) along drought, while in ChK 3226 greater amounts of TFA were observed in S1. In rehydration, PN of S1 plants completely recovered (ILC 3279) or remained slightly below control (ChK 3226). As regards S2 plants, ILC 3279 showed stronger PN and gs reductions than ChK 3226, despite both genotypes totally recovered Amax and chlorophyll (Chl) a fluorescence. ChK 3226 recovered more efficiently from membrane damage. Under control conditions, greater amounts of most of the studied soluble metabolites occurred in ChK 3226 plants. Malate and citrate decreased with water stress (S2) in both genotypes. Sucrose and pinitol (that had a higher concentration than sucrose in both genotypes) increased in ILC 3279 (S1 and S2), and decreased in ChK 3226 (S2). In ILC 3279 proline and asparagine followed similar patterns. Genotypes showed a similar shoot dry mass (DM) in control plants, but root DM was higher in ChK 3226. Drought reduced root and shoot DM in ChK 3226 already under S1, while in ILC 3279 root DM was unaffected by drought and shoot biomass decreased only in S2. Root/shoot ratio was always higher in ChK 3226 but tended to decrease under stress, while the opposite was observed in ILC 3279. No pods were obtained from control plants of both genotypes, or droughted ILC 3279 plants. ChK 3226 produced pods under S1 (higher yield) and S2. Under stress conditions, ChK 3226 was less affected in photosynthetic activity and membrane integrity, showing a better tolerance to drought. This agrees with the better yield of this genotype under water stress. Distinct strategies seem to underlie the different physiological responses of the two genotypes to water deficit. In spite of its significant solutes accumulation, ILC 3279 was more affected in photosynthetic activity and membrane integrity during water stress than ChK 3226, which showed better yield, under drought. A relation could not be established between solutes accumulation of ILC 3279 and yield., and M. C. Matos ... [et al.].
Seedlings of spring barley, meadow fescue, and winter rape were fumigated with 180 μg kg-1 of ozone for 12 d, and effect of O3 on photosynthesis and cell membrane permeability of fumigated plants was determined. Electrolyte leakage and chlorophyll fluorescence were measured after 6, 9, and 12 d of fumigation, while net photosynthetic rate (PN) and stomatal conductance (gs) were measured 9 d after the start of ozone exposure. O3 treatment did not change membrane permeability in fescue and barley leaves, while in rape a significant decrease in ion leakage was noted within the whole experiment. O3 did not change the photochemical efficiency of photosystem 2 (PS2), i.e., Fv/Fm, and the initial fluorescence (F0). The values of half-rise time (t1/2) from F0 to maximal fluorescence (Fm) decreased in fescue and barley after 6 and 9 d of fumigation. PN decreased significantly in ozonated plants, in the three species. The greatest decrease in PN was observed in ozonated barley plants (17 % of the control). The ozone-induced decrease in PN was due to the closure of stomata. Rape was more resistant to ozone than fescue or barley. Apparently, the rape plants show a large adaptation to ozone and prevent loss of membrane integrity leading to ion leakage. and A. Plażek, M. Rapacz. A. Skoczowski.
Calmodulin (CaM) is a highly conserved calcium sensor protein associated with chilling tolerance in living organisms. It has four EF-hand domains for binding of four Ca2+, two of them located in the N-terminus, and the other two in the C-terminus. A notothenioid CaM gene fragment (CaMm), which only codes for N-terminus of CaM (with two EF-hand domains), was introduced into Nicotiana benthamiana. Effects of its overexpression on chilling tolerance in plants were explored. During 4◦C or 0◦C chilling treatment, both CaMm and CaM transgenic plants showed higher PSII maximum quantum yield, actual quantum yield, and soluble protein content, lower electrolyte leakage and malondialdehyde content than that of the control. The changes in these physiological indices were comparable between the CaMm and CaM transgenic plants during the treatments. These results indicate that the N-terminus of calmodulin is likely the key functional domain involved in the adaptive response to cold stress., T. J. Zhang, L. J. Pan, Q. Huang, L. H. Zhu, N. Yang, C. L. Peng, L. B. Chen., and Obsahuje seznam literatury