The epiphytic fern Platycerium bifurcatum grows in different habitats characterized by drought and high irradiance stress. The plant shows diurnal malate oscillations, indicative for CAM expression only in cover leaves, but not in sporotrophophyll. In P. bifurcatum cover leaves exposed to high irradiance and desiccation, the decrease in both CO2 assimilation (PN) and stomatal conductance (gs) was accompanied with occurrence of diurnal malate oscillations. Exogenously applied abscisic acid (ABA) induced the decrease in PN and gs, but no clear change in malate oscillations. The measurements of the maximum quantum efficiency of photosystem 2 (Fv/Fm) under high irradiance showed distinct photoinhibition, but no clear changes in Fv/Fm due to desiccation and ABA-treatment were found. and G. Rut ... [et al.].
Diurnal fluctuations in the contents of malate in gametophores of Polytrichum commune Hedw. and Polytrichum piliferum Hedw. were small. In gametophores of Mnium undulatum Hedw. and leaves of Hieracium pilosella L. significant differences were found in the accumulation of malate between day and night. However, no significant diurnal differences were found in the contents of citrate. High irradiance, desiccation, and submergence by water resulted in increases in daily fluctuations of malate, particularly in the gametophores of P. piliferum and leaves of H. pilosella. Accumulation of malate during night may show the adaptation of the studied species to unfavourable conditions caused by stresses. The change in activity of NADP-malic enzyme may characterize a response to stress factors. and A. Rzepka, G. Rut, J. Krupa.
Mosses are plants of simple anatomical structure and as they occur in habitats characterised not only by major changes in the concentrations of carbon dioxide, they suffer the stress of periodic water shortages or submergence in water. The condition of hypoxia (submergence in water or CaCl2 solution) prompted the increase in daily fluctuations in malate content, particularly in the gametophores of Polytrichum piliferum Hedw. No significant increases in daily fluctuations of citrate were found in the hypoxia and post-hypoxia conditions. Placing gametophores for 168 h in air with a concentration of CO2 at ∼ 350 μmol mol-1, and 21% of oxygen, after being submerged for 24 h in water, reduced the daily fluctuations of malate and citrate. Keeping the plants in these conditions for a long time (120-168 h) produced the increase in photosynthesis intensity in the gametophores of Mnium undulatum Hedw. and P. piliferum by 13% and 51%, respectively, when compared with plants submerged for 24 h. The intensity of respiration during post-hypoxia, however, was markedly lower compared with the intensity of the process recorded in hypoxia, particularly in the gametophores of P. piliferum. The increased daily fluctuations of malate and NAD(P)H in the studied species under hypoxia could constitute an important element of adaptive strategy to these conditions. and G. Rut, A. Rzepka, J. Krupa.