a1_The aim of this work was to study the acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) grown in controlled environment chambers under elevated temperature (ambient + 3.5°C) and CO2 (700 μmol mol-1) with varying soil water regimes. More specifically, we studied, during two development stages (early: heading; late: florescence completed), how the temperature response of light-saturated net photosynthetic rate
(Psat), maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase activity (Vcmax) and potential rate of electron transport (Jmax) acclimatized to the changed environment. During the early growing period, we found a greater temperature-induced enhancement of Psat at higher measurement temperatures, which disappeared during the late stage. Under elevated growth temperature, Vcmax and Jmax at lower measurement temperatures (5-15°C) were lower than those under ambient growth temperature during the early period. When the measurements were done at 20-30°C, the situation was the opposite. During the late growing period, Vcmax and Jmax under elevated growth temperature were consistently lower across measurement temperatures. CO2 enrichment significantly increased Psat with higher intercellular CO2 compared to ambient CO2 treatment, however, elevated CO2 slightly decreased Vcmax and Jmax across measurement temperatures, probably due to down-regulation acclimation. For two growing periods, soil water availability affected the variation in photosynthesis and biochemical parameters much more than climatic treatment did. Over two growing periods, Vcmax and Jmax were on average 36.4 and 30.6%, respectively, lower with low water availability compared to high water availability across measurement temperatures. During the late growing period, elevated growth temperature further reduced the photosynthesis under low water availability., a2_Vcmax and Jmax declined along with the decrease in nitrogen content of leaves as growing period progressed, regardless of climatic treatment and water regime. We suggest that, for grass species, seasonal acclimation of the photosynthetic parameters under varying environmental conditions needed to be identified to fairly estimate the whole-life photosynthesis., Z.-M. Ge ... [et al.]., Obsahuje poznámky, and Obsahuje bibliografii
Prosopis juliflora is an invasive leguminous tree species growing profusely under wide environmental conditions. Primary objective of this study was to investigate adaptation strategies evolved to deal with wide environmental conditions during different seasons. P. juliflora adapts through a production of leaves in two seasons, namely, the spring (the first cohort) and monsoon (the second cohort) with differing but optimal physiological characteristics for growth in respective seasons. Our studies show that the first cohort of leaves exhibit maximum carbon fixation under moderate temperatures and a wide range of PPFD. However, these leaves are sensitive to high leaf-to-air-vapor pressure deficit (VPD) occurring at high temperatures in summer resulting in senescence. While the second cohort of leaves produced during monsoon showed maximum carbon fixation at high irradiance and temperatures with low VPD, it is sensitive to low temperatures causing senescence in winter., P. A. Shirke, U. V. Pathre, P. V. Sane., and Obsahuje bibliografické odkazy
An open-top chamber experiment was carried out from April through October 2006 to examine the effects of elevated (80 nmol mol-1) atmospheric O3 on Ginkgo biloba (4-years-old) in urban area. The air with ambient O3 (AA, ≈ 45 nmol mol-1) was used as control. The leaf mass and size, leaf area index, net photosynthetic rate (PN), apparent quantum yield, transpiration rate, and stomatal conductance were decreased by elevated O3 (EO) exposure. Visible foliar injury, which is light-brown flecks, was observed in the EO OTCs after 90 d of exposure. Carboxylation efficiency (ΦCO2) and photorespiration and dark respiration rates were enhanced by EO exposure in the first half of the season, but all of them turned to be lower than those of the AA control at the end of experiment. Stomata limitation of photosynthesis was significantly higher than control in the whole season (p<0.05). Chlorophyll (Chl) content was lower in EO variant than in the control and the difference became more and more apparent through the season. Hence the decrease in PN of G. biloba exposed to EO was the result of both stomatal and non-stomatal limitations. In the early season, the inhibition of photosynthesis was mainly caused by the stomatal limitation, and the earliest response was photoprotective down-regulation of photosynthesis but not photodamage. However, at the end of the season, the non-stomatal limiting factors such as decrease in Chl content, decrease in ΦCO2, and anti-oxidative enzyme activity became more important. and X.-Y. He ... [et al.].
In comparison with its wild type (WT), the transgenic (TG) rice with silenced OsBP-73 gene had significantly lower plant height, grain number per panicle, and leaf net photosynthetic rate (PN). Also, the TG rice showed significantly lower chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), RuBPCO activase, and RuBP contents, photosystem 2 (PS2) photochemical efficiency (Fv/Fm and ΔF/Fm'), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), photosynthetic electron transport and photophosphorylation rates as well as sucrose phosphate synthase activity, but higher intercellular CO2 concentration, sucrose, fructose, and glycerate 3-phosphate contents, and non-photochemical quenching of Chl fluorescence (NPQ). Thus the decreased PN in the TG rice leaves is related to both RuBP carboxylation and RuBP regeneration limitations, and the latter is a predominant limitation to photosynthesis. and Y. Chen, D.-Q. Xu.
Photosynthetic traits of two-year-old Japanese larch seedlings (Larix kaempferi Carr.) grown at elevated CO2 concentrations were studied in relation to structural changes in the needles. Seedlings were grown at two CO2 concentrations, 360 (AC) and 720 (EC) μmol mol-1 at high and low nutrient supply rates, high N (HN) and low N (LN). The photosynthetic capacity fell significantly in EC+LN, but increased significantly in EC+HN. Since the mesophyll surface area exposed to intercellular space per unit leaf area (Ames/A) is correlated with the photosynthetic rate, we measured Ames/A for larch needles growing in EC. Changes of Ames/A in both EC+HN and EC+LN were very similar to the changes in photosynthetic capacity. This suggests that the changes of Ames/A in EC probably caused the changes in the photosynthetic capacity. The changes of Ames/A in EC were attributed to changes in the mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking morphological and structural adaptations into account as well as biochemical factors. and N. Eguchi ... [et al.].
In the seasonally flooded forest of the Mapire River, a tributary of the Orinoco, seedlings remain totally covered by flood water for over six months. In order to characterize the physiological response to flooding and submergence, seedlings of the tree Pouteria orinocoensis, an important component of the forest vegetation, were subjected experimentally to flooding. Flooding was imposed gradually, the maximum level of flood including submerged and emerged leaves. After 45 d a severe reduction of net photosynthetic rate (PN) and stomatal conductance (g s) was observed in emerged leaves, whereas leaf water potential remained constant. The decrease in PN of emerged leaves was associated to an increase in both relative stomatal and non-stomatal limitations, and the maintenance of the internal/air CO2 concentration (C i/C a) for at least 20 d of flooding. After this time, both PN and gs became almost zero. The decrease in photosynthetic capacity of emerged leaves with flooding was also evidenced by a decrease in carboxylation efficiency; photon-saturated photosynthetic rate, and apparent quantum yield of CO2 fixation. Oxygen evolution rate of submerged leaves measured after three days of treatment was 7 % of the photosynthetic rate of emerged leaves. Submersion determined a chronic photoinhibition of leaves, viewed as a reduction in maximum quantum yield in dark-adapted leaves, whereas the chlorophyll fluorescence analysis of emerged leaves pointed out at the occurrence of dynamic, rather than chronic, photoinhibition. This was evidenced by the absence of photochemical damage, i.e. the maintenance of maximum quantum yield in dark-adapted leaves. Nevertheless, the observed lack of complementarity between photochemical and non-photochemical quenching after 12 d of flooding implies that the capacity for photochemical quenching decreased in a non-co-ordinate manner with the increase in non-photochemical quenching.
The objective of the present investigation was to examine the extent of variations in single leaf net photosynthetic rate (PN) and its relative dependence on stomatal conductance (gs) and the mesophyll capacity to fix carbon in 12 clones of the natural rubber plant. There were significant variations in PN measured at low and saturating photon flux density (PFD); the extent of variation was larger at low than at saturating PFD. The compensation irradiance (CI) and apparent quantum yield of CO2 assimilation (φc) calculated from the PN/PFD response curves showed significant variations among the clones. PN at low irradiance was positively correlated with φc. Thus a clone with large PN at low irradiance, high φc, and low CI may tolerate shade better and thus produce a high tree stand per hectare. A strong positive correlation existed between PN saturated with radiant energy (Psat) and carboxylation efficiency (CE) estimated from the response curves of PN on intercellular CO2 concentration (Ci), but gs showed a poor correlation with Psat High CO2 compensation concentration (Γ) led to low CE in Hevea clones. A clone with large Psat, high CE, low gs, and low Γ is the one in which photosynthesis is more dependent on the mesophyll factors than stomata. Such a clone may produce relatively high biomass and maintain high water use efficiency. and K. N. Nataraja, J. Jacob.
Photosynthetic characteristics of two hybrid rice combinations, Peiai 64S/E32 and Shanyou 63, were compared at the panicle differentiation stage. As compared with Shanyou 63, the new combination Peiai 64S/E32 showed a significantly higher net photosynthetic rate (PN), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), and photorespiratory rate (RP) as well as leaf chlorophyll content, but a significantly lower dark respiration rate (RD) and compensation irradiance (Ic). It also showed a slightly higher photochemical efficiency (Fv/Fm and ΔF/Fm') of photosystem 2, a lower non-photochemical quenching (qN), and a similar CO2 compensation concentration (Γ) as compared to Shanyou 63. and Hua Jiang ... [et al.].
At the grain-filling stage, net photosynthetic rate (PN), stomatal conductance (gs), and ribulose-1,5-bisphosphate carboxylation efficiency (CE) were correlated in order to find the determinant of photosynthetic capacity in rice leaves. For a flag leaf, PN in leaf middle region was higher than in its upper region, and leaf basal region had the lowest PN value. The differences in gs and CE were similar. PN, gs, and CE gradually declined from upper to basal leaves, showing a leaf position gradient. The correlation coefficient between PN and CE was much higher than that between PN and gs in both cases, and PN was negatively correlated with intercellular CO2 concentration (Ci). Hence the carboxylation activity or activated amount of ribulose-1,5-bisphosphate carboxylase/oxygenase rather than gs was the determinant of the photosynthetic capacity in rice leaves. In addition, in flag leaves of different tillers PN was positively correlated with gs, but negatively correlated with Ci. Thus gs is not the determinant of the photosynthetic capacity in rice leaves. and D.-Y. Zhang ... [et al.].
Plant growth, contents of photosynthetic pigments, photosynthetic gas exchange, and chlorophyll (Chl) fluorescence in soybean [Glycine max (L.) Merr. cv. Heinong37] were investigated after it was inoculated with Sinorhizobium fredii USDA191 or treated with 5 mM (NH4)2SO4 (N5) and 30 mM (NH4)2SO4 (N30), respectively. In the plants following N5 fertilization, not only plant biomass, leaf area, and Chl content, but also net photosynthetic rate (PN), stomatal conductance (gs), carboxylation efficiency (CE), maximum photochemical efficiency (Fv/Fm) of photosystem 2 (PS2), and quantum yield of PS2 (ΦPS2) were markedly improved as compared with the control plants. There were also positive effects on plant growth and plant photosynthesis after rhizobia inoculation, but the effects were much less than those of N5 fertilization. For N30 plants there were no significant positive effects on plant growth and photosynthetic capacity. Plant biomass, PN, and gs were similar to those of N-limited (control) plants. ΦPS2 and photochemical quenching (qP) were obviously declined while content of carotenoids and non-photochemical quenching (qN) were significantly enhanced in N30 treated plants. This indicated that excess N supply may cause some negative effects on soybean plants. and X.-J. Zhou ... [et al.].