With japonica rice 98-08, indica hybrids Shanyou 63, Gangyou 881, and X07S/Zihui 100, and sub-species hybrid Peiai 64S/9311 as materials, chlorophyll (Chl) content, Chl a fluorescence parameters, and membrane lipid peroxidation in flag leaf were measured at late developmental stages under natural conditions. Fv/Fm, qP, ΦPS2, and electron transport rate gradually decreased while qN increased conversely. Excessive photon energy led to the accumulation of active oxygen (O2-), H2O, malonyldialdehyde, and products of membrane lipid peroxidation, and resulted in reduced Chl content and early ageing subsequent to the photooxidation during flag leaf senescence. There was obvious diversification of these parameters among rice cultivars. In comparison with japonica cv. 98-08 (tolerant to photooxidation), Fv/Fm decreased in indica cv. Shanyou 63 (susceptible to photooxidation) with greater accumulation of active oxygen and a sharp drop in Chl content, which resulted in "yellowish" early ageing, and affected the filling and setting of rice grains. The mechanism for premature ageing in indica rice was related to irradiance and temperature at filling stages. On a sunny day at above 25 °C, the reaction centre of photosystem 2 (PS2) exhibited a dynamic change on reversible inactivation. Under the intense irradiance at noon, PS2 function in indica rice exhibited obvious down-regulation and photoinhibition. Under intense irradiance with lowered temperatures, PS2 resulted in photo-damage and early ageing, related to the degradation of PS2-D1 protein and the inhibition of endogenous protection systems such as the xanthophyll cycle and enzymes scavenging active oxygen. Hence for high-yield breeding, based on a good plant-type and utilising heterosis and tolerance of photooxidation, the selection of japonica rice or a sterile line with the japonica genotype as female is a strategy worthy of consideration. and Demao Jiao, Benhua Ji, Xia Li.
Forty-four genotypes from the rice germplasm were identified under photoinhibition/photooxidation and shade conditions and divided into four basic types: (1) cultivars tolerant to both photooxidation and shading, (2) cultivars tolerant to photooxidation but sensitive to shading, (3) cultivars tolerant to shading but sensitive to photooxidation, and (4) cultivars sensitive to both photooxidation and shading. Photosynthetic characteristics of a cultivar tolerant (cv. Wuyugeng 3) and a cultivar sensitive (cv. Xiangxian) to photooxidation and shading were compared. The photochemical efficiency (Fv/Fm) of photosystem 2 (PS2) and the content of PS2-D1 protein in the tolerant cultivar Wuyugeng 3 decreased less under photooxidative conditions as compared with Xiangxian. Under similar conditions, superoxide dismutase was induced rapidly to a higher activity and the active oxygen (O-) built up to a lower level in Wuyugeng 3 than in Xiangxian. Net photosynthetic rate (PN) decreased by 23 % in Wuyugeng 3 vs. 64 % in Xiangxian. Shading (80 %) during the booting stage caused only small decreases (7-13 %) in ribulose-1,5-bisphosphate carboxylase activity and PN in Wuyugeng 3 but severe decreases (57-64 %) were observed in Xiangxian which corresponded to the decreases in grain yield of the two cultivars (38 and 73 %, respectively). We described a simple and effective screening method and physiological basis for breeding crops for enhanced tolerance to both high and low irradiance. and Demao Jiao, Xia Li.