A field experiment was conducted to investigate the carbon (C) and nitrogen (N) balance in relation to grain formation and leaf senescence in two different senescent types of maize (Zea mays L.), one stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55). In comparison with Hokkou 55, P3845 had a higher N concentration (Nc) in the leaves and a higher specific N absorption rate by roots (SARN), which indicated that a large amount of N was supplied to the leaves from the roots during maturation. This resulted in a higher photosynthetic rate, which supports saccharide distribution to roots. Thus, stay-green plants maintained a more balanced C and N metabolism between shoots and roots. Moreover, the coefficients of the relationship between the relative growth rate (RGR) and Nc, and between the photon-saturated photo-synthetic rate (Psat) and Nc were lower in P3845. The Psat per unit Nc in leaves was lower in the stay-green cultivars, which indicated that high yield was attained by longer green area duration and not by a high Psat per unit Nc in the leaf. Consequently, a high Psat caused a high leaf senescence rate because C and N compounds will translocate actively from the leaves. and Ping He ... [et al.].
Leaves developed at high irradiance (I) often have higher photosynthetic capacity than those developed at low I, while leaves developed at elevated CO2 concentration [CO2] often have reduced photosynthetic capacity compared with leaves developed at lower [CO2]. Because both high I and elevated [CO2] stimulate photosynthesis of developing leaves, their contrasting effects on photosynthetic capacity at maturity suggest that the extra photosynthate may be utilized differently depending on whether I or [CO2] stimulates photosynthesis. These experiments were designed to test whether relationships between photosynthetic income and the net accumulation of soluble protein in developing leaves, or relationships between soluble protein and photosynthetic capacity at full expansion differed depending on whether I or [CO2] was varied during leaf development. Soybean plants were grown initially with a photosynthetic photon flux density (PPFD) of 950 µmol m-2 s-1 and 350 µmol [CO2] mol-1, then exposed to [CO2] ranging from 135 to 1400 µmol mol-1 for the last 3 d of expansion of third trifoliolate leaves. These results were compared with experiments in which I was varied at a constant [CO2] of 350 µmol mol-1 over the same developmental period. Increases in area and dry mass over the 3 d were determined along with daily photosynthesis and respiration. Photosynthetic CO2 exchange characteristics and soluble protein content of leaves were determined at the end of the treatment periods. The increase in leaflet mass was about 28 % of the dry mass income from photosynthesis minus respiration, regardless of whether [CO2] or I was varied, except that very low I or [CO2] increased this percentage. Leaflet soluble protein per unit of area at full expansion had the same positive linear relationship to photosynthetic income whether [CO2] or I was varied. For variation in I, photosynthetic capacity varied directly with soluble protein per unit area. This was not the case for variation in [CO2]. Increasing [CO2] reduced photosynthetic capacity per unit of soluble protein by up to a factor of 2.5, and photosynthetic capacity exhibited an optimum with respect to growth [CO2]. Thus CO2 did not alter the relationship between photosynthetic income and the utilization of photosynthate in the net accumulation of soluble protein, but did alter the relationship between soluble protein content and photosynthetic characteristics in this species.
Growth, net photosynthetic rate (PN), chlorophyll fluorescence induction kinetics, and stromal fructose-1,6-bisphosphatase (sFBPase) in annual legumes native to the Mediterranean region, two clovers (Trifolium subterraneum L. ssp. oxaloides Nyman cv. Clare and T. michelianum Savi cv. Giorgia) and two Medicago species (M. polymorpha L. cv. Anglona and M. truncatula Gaertn. cv. Paraggio), shifted from 20 to 10 °C for 1 d or developed at 10 °C were compared with controls kept at 20 °C. Cold development produced a larger stimulation of growth in the clover cv. Giorgia and the Medicago cv. Paraggio. Transferring plants to low temperatures affected PN relatively less in clovers than in Medicago plants. Development at 10 °C relieved the inhibition of photosynthesis in Giorgia and Paraggio, but not in Clare and Anglona, which correlated with increases in the maximum rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO (Vcmax), and the photon-saturated rate of electron transport (Jmax). In Medicago, transfer from high to low temperature inhibited photosynthesis in a lesser extent in Anglona than in Paraggio, which showed severe limitations at level of Vcmax and Jmax. Development at 10 °C in Paraggio produced an efficient photosynthetic cold acclimation, this being associated with a two-fold increase of quantum yield of photosystem 2 electron transport (ΔF/F'm) and with the activity of sFBPase. By contrast, Anglona showed an irreversible inhibition of PN coupled with the reduction of carbon metabolism by impairment of Calvin cycle enzyme activities such as RuBPCO and sFBPase, resulting in a poor cold acclimation of photosynthesis in this cultivar. and M. C. Antolín, M. Hekneby, M. Sánchez-Díaz.
During ontogeny of Gossypium hirsutum L. floral buds (squares), increases in area and dry mass (DM) of floral bracts and the subtending sympodial leaf followed a sigmoid growth curve with increasing square age. The maximum growth rates of the bract area and bract DM occurred between 15 and 20 d after square first appearance (3 mm in diameter). Net photosynthetic rate (PN) of the sympodial leaf at first fruiting branch position of main-stem node 10 reached a maximum when the subtended square developed into a white flower. Floral bracts had much lower PN and higher dark respiration than the subtending leaf. The amount of 14CO2 fixation by the bracts of a 20-d-old square was only 22 % of the subtending leaf, but 56 % of 14C-assimilate in the floral bud was accumulated from the bracts, 27 % from the subtending leaf, and only 17 % from the main-stem leaf at 6 h after 14C feeding these source s. Hence floral bracts play an important role in the carbon supply of developing cotton squares. and Duli Zhao, D. M. Oosterhuis.
Source-sink manipulation could regulate the net photosynthetic rate (PN) of winter wheat after anthesis, however, the direction and magnitude of the regulation varied with time after anthesis. The PN was significantly increased by source reduction at the initial time of grain filling, but sink reduction had little influence on the PN, which suggested that the sink (spike) limitation did not occur at this time. Source-sink relation markedly affected PN during rapid grain filling. The PN was increased by source reduction and decreased by sink reduction significantly, which indicated that PN was closely associated with the change of source or sink size. The effect of source-sink manipulation on PN had some relationship with the occurrence of plant senescence at the time of late grain filling. Source reduction accelerated the senescence and dropped the PN, meanwhile, sink reduction delayed the senescence and promoted the PN. A direct relation between the effect of source-sink manipulation on PN and stomatal limitation was not found. Removing one quarter of leaves (RQ) had little influence on spike development after anthesis. In this case there was enough compensation in source production through photosynthesis. Removing one half of leaves (RH) made grain mass per spike and mass of grains lowered, especially the grain mass in the top and base positions of spike declined markedly. The source supply was grain-limiting. Removing one quarter of spikelets (RS) was beneficial to grain-setting in the remaining spikelets, leading to the increase of grain mass. Thus promoting the source supply of photosynthates after anthesis is of major importance for grain to set and to develop. and Zhenlin Wang ... [et al.].