Its high oxidant capacity and ability to generate reactive oxygen species cause ozone toxicity. We studied the effect of ambient ozone on chlorophyll (Chl) a fluorescence, antioxidant enzymes, ascorbate contents, and lipid peroxidation in potatoes grown in open-top chambers in the field. In plants grown in non-filtered air (NFA), the development of non-photochemical quenching brought about a decrease in photosystem 2 (PS2) photochemical efficiency. Also the ability of PS2 to reduce the primary acceptor QA was lower than in charcoal-filtered, ozone-free air (CFA). Changes in Chl fluorescence yield were associated with changes in the thylakoid membrane. Ozone altered chloroplast membrane properties, as indicated by an increase in membrane lipid peroxidation in FNA-leaves compared to CFA plants. The ascorbate pool and activities of antioxidant enzymes were used for an indication of the detoxification system state in NFA and CFA leaves, whereby ozone affects the ascorbate concentration and decreases the antioxidant enzymes activities. The capacity of both detoxifying systems together was not high enough to protect potato plants against ambient ozone concentrations which reduced the photosynthetic yield in this potato cultivar. and A. Calatayud, J. W. Alvarado, E. Barreno.
The lichens Parmelia quercina, Parmelia sulcata, Evernia prunastri, Hypogymnia physodes, and Anaptychia ciliaris were exposed to ozone (O3) in controlled environment cuvettes designed to maintain the lichens at optimal physiological activity during exposure. Measurements of gas exchange, modulated chlorophyll (Chl) fluorescence, and pigment analysis were conducted before and after exposure to 300 mm3 (O3) m-3, 4 h per d for 14 d. No changes in the efficiency of photosystem 2 (PS2) photochemistry, the reduction state of QA, or the electron flow through PS2, measured by Chl fluorescence, were detected in any of the five lichen species studied. Additionally, neither photosynthetic CO2 assimilation nor xanthophyll cycle activity or photosynthetic pigment concentration were affected by high O3 concentrations. Thus the studied lichen species have significant capacities to withstand oxidative stresses induced by high concentration of O3. and A. Calatayud, P. J. Temple, E. Barreno.
Three-years-old trees of Satsuma mandarin (Citrus unshiu [Mak.] Marc.) cv. Okitsu were exposed to O3 fumigation during long term (one year) in open-top chambers. As a result of the treatment, chlorophyll a fluorescence and gas exchange parameters were modified with respect to trees growing in O3-free conditions. Net photosynthetic rate and stomatal conductance decreased and intercellular CO2 concentration increased according to a reduction of the non-cyclic electron flow and a lower capacity to reduce the quinone pool. O3 also reduced the development of non-photochemical quenching preventing the dissipation of excess excitation energy and, therefore, generated several alterations in photosynthetic apparatus. All these effects were obtained in long-term exposure and higher O3 concentration. In O3 ambient conditions, the effects were minor. and A. Calatayud ... [et al.].
The effects of foliar spraying of the dithiocarbamate zineb on two cultivars of tomato grown in the field in a site with high ozone concentrations were studied by means of biomass assessment, antioxidant enzyme assays, lipid peroxidation, and chlorophyll fluorescence measurements. Zineb prevented the peroxidation of membrane lipids and decreased the activity of scavenging enzymes, which suggests that plants sprayed with zineb are subjected to lower oxidative stress than controls. The beneficial effects of zineb protection is the utilization of a larger fraction of absorbed radiant energy in photosynthesis and a larger fruit yield in plants of both cultivars. and Á. Calatayud, E. Barreno.
Watermelon (Citrillus lanatus) plants were grown for two consecutive years in open-top chambers with three different ozone concentrations (O3-free air, O3 ambient, and air with additional O3; CFA, NFA, and NFA+O3) and three nitrogen fertilizer concentrations [0, 14.0, and 29.6 g N per pot; N0, N1, and N2). There was an interaction between ozone and N fertilizer for the major parameters studied. O3 and N2 treatments led to a significant decrease in maximum efficiency of photosystem 2 (PS2) photochemistry (Fv/Fm), and induced a significant decrease in the actual quantum yield of PS2 (ΦPS2), due mainly to the increased closure of PS2 reaction centres (qP) and to an increase in the non-photochemical quenching (NPQ). On the other hand, these plants exhibited an increased susceptibility to photoinhibition, which could be associated with an increased fraction of reduced QA. An increase in lipid peroxidation indicated that damage was occurring at the membrane levels. High N concentration enhanced the detrimental effects of ozone on the fluorescence parameter induction and lipid peroxidation. All these negative alterations led to a decreased yield. and A. Calatayud, F. Pomares, E. Barreno.
Spinach (Spinacia oleracea L. cv. Clermont) leaves grown in open-top chambers and exposed to three different concentrations of ozone were measured for gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation at the end of growing season. High O3 concentration reduced Fv/Fm, indicating that the efficiency in the energy conversion of photosystem 2 (PS2) was altered. The rate of non-cyclic electron transport rate and the capacity to reduce the quinone pool were also affected. The development of non-photochemical quenching was not high enough to decrease the photon excess in the PS2. The limitation of photosynthetic activity was probably correlated with stomata closure and with an increase in intercellular CO2 concentration. Under oxidative stress, superoxide dismutase (SOD) activity was stimulated in parallel with lipid peroxidation. We did not find any differences in the ascorbate (AsA) pool and ascorbate peroxidase (APX) or glutathione reductase (GR) activities between air qualities. Small, but similar responses were observed in spinach leaves exposed to ambient ozone concentration. and A. Calatayud ...[et al.].
Ozone is the major phytotoxic air pollutant that reduces the yield of several agricultural crops in the Spanish Mediterranean area. We studied four lettuce cultivars (Lactuca sativa L.) for the effects of different O3 concentrations during the winter on chlorophyll (Chl) a fluorescence, lipid peroxidation, and root length in outdoor open-top chambers. Under O3 the photosynthetic quantum conversion declined while heat emissions increased in all cultivars; these results provide more evidence of non-filtered air with additional ozone (NFA+O3) treatment compared with non-filtered air (NFA) and charcoal filtered ozone-free air (CFA). Changes in the Chl a fluorescence may be associated with an increase in membrane lipid peroxidation as well as with observed reduction of root length under O3 stress. and A. Calatayud, J. W. Alvarado, E. Barreno.