In the rat model, 6-hydroxydopamine (6-OHDA) known as a selective catecholaminergic neurotoxin used chiefly in modeling Parkinson's disease (PD). Continuous aerobic exercise and curcumin supplementations could play a vital role in neuroprotection. This study aimed to explore the neuroprotective roles of regular aerobic exercise and curcumin during PD. For this, rats were treated as follows for 8 consecutive weeks (5 d in a week): For this, animals were orally treated with curcumin (50 ml/kg) alone or in combination with aerobic exercise. Compared with a control group, induction of PD by 6-OHDA increased the amount of α-synuclein protein and malondialdehyde levels and decreased the number of substantia nigra neurons, total antioxidant capacity, and glutathione peroxidase activity in brain tissue. All these changes were abolished by the administration of curcumin with aerobic exercise treatments. Activity behavioral tests also confirmed the above-mentioned results by increasing the rod test time and the number of rotations due to apomorphine injection. Histopathology assays mimic the antioxidant activity and behavioral observations. Combined curcumin with aerobic exercise treatments is potentially an effective strategy for modifying the dopaminergic neuron dysfunction in 6-OHDA-induced rats modeling PD via dual inhibiting oxidative stress indices and regulating behavioral tasks.
A thioredoxin-like protein (txl) gene was cloned from the bumblebee, Bombus ignitus. The B. ignitus txl (Bitxl) gene spans 1777 bp and consists of three introns and four exons coding for 285 amino acid residues with a conserved active site (CGPC). The deduced amino acid sequence of the Bitxl cDNA was 65% similar to the Drosophila melanogaster txl. Northern blot analysis revealed the presence of Bitxl transcripts in all tissues examined. When H2O2 was injected into the body cavity of B. ignitus workers, Bitxl mRNA expression was up-regulated in the fat body tissue. In addition, the expression levels of Bitxl mRNA in the fat body greatly increased when B. ignitus workers were exposed to low (4°C) or high (37°C) temperatures, or injected with lipopolysaccharide (LPS), which suggests that the Bitxl possibly protects against oxidative stress caused by extreme temperatures and bacterial infection.
Uric acid is the final product of human purine metabolism. It was pointed out that this compound acts as an antioxidant and is able to react with reactive oxygen species forming allantoin. Therefore, the measurement of allantoin levels may be used for the determination of oxidative stress in humans. The aim of the study was to clarify the antioxidant effect of uric acid during intense exercise. Whole blood samples were obtained from a group of healthy subjects. Allantoin, uric acid, and malondialdehyde levels in plasma and erythrocytes were measured using a HPLC with UV/Vis detection. Statistical significant differences in allantoin and uric acid levels during short-term intense exercise were found. Immediately after intense exercise, the plasma allantoin levels increased on the average of 200 % in comparison to baseline. Plasma uric acid levels increased slowly, at an average of 20 %. On the other hand, there were no significant changes in plasma malondialdehyde. The results suggest that uric acid, important antioxidant, is probably oxidized by reactive oxygen species to allantoin. Therefore allantoin may be suitable candidate for a marker of acute oxidative stress., R. Kanďár, X. Štramová, P. Drábková, J. Křenková., and Obsahuje bibliografii
Oxidative stress is an imbalance between free radicals and antioxidants, and is an important etiological factor in the development of hypertension. Recent experimental evidence suggests that subpressor doses of angiotensin II elevate oxidative stress and blood pressure. We aimed to investigate the oxidative stress related mechanism by which a subpressor dose of angiotensin II induces hypertension in a normotensive rat model. Normotensive male Wistar rats were infused with a subpressor dose of angiotensin II for 28 days. The control group was sham operated and infused with saline only. Plasma angiotensin II and H2O2 levels, whole-blood glutathione peroxidase, and AT-1a, Cu/Zn SOD, and p22phox mRNA expression in the aorta was assessed. Systolic and diastolic blood pressures were elevated in the experimental group. There was no change in angiotensin II levels, but a significant increase in AT-1a mRNA expression was found in the experimental group. mRNA expression of p22phox was increased significantly and Cu/Zn SOD decreased significantly in the experimental group. There was no significant change to the H2O2 and GPx levels. Angiotensin II manipulates the free radical-antioxidant balance in the vasculature by selectively increasing O2 - production and decreasing SOD activity and causes an oxidative stress induced elevation in blood pressure in the Wistar rat., M. M. Govender, A. Nadar., and Obsahuje bibliografii
Winter wheat is a grass species widely planted in northern and central China, where the increase of aerosols, air pollutants and population density are causing significant reduction in solar irradiance. In order to investigate the adaptation of winter wheat (Triticum aestivum L., cv. Yangmai 13) to low irradiance conditions occurring in the downstream plain of the Yangtze River (China), plants were subjected to four solar irradiance treatments (100%, 60%, 40%, and 20% of environmental incident solar irradiance). Significant increases in chlorophyll (Chl) and xanthophyll (Xan) pigments, and decreases in Chl a/b and Xan/Chl ratios were observed in plants under low light. Light-response curves showed higher net photosynthetic rates (PN) in fully irradiated plants, that also showed a higher light-compensation point. Shaded plants maintained high values of minimal fluorescence of dark-adapted state (F0) and maximum quantum efficiency of PSII photochemistry (Fv/Fm) that assess a lower degree of photoinhibition under low light. Reduced irradiance caused decreases in effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and nonphotochemical quenching coefficient (qN), and the promotion of excitation pressure of PSII (1 - qP). The activities of the antioxidant enzymes superoxide dismutase and peroxidase were high under reduced light whereas no light-dependent changes in catalase activity were observed. Thiobarbituric acid reactive species content and electrolyte leakage decreased under shaded plants that showed a lower photooxidative damage. The results suggest that winter wheat cv. Yangmai 13 is able to maintain a high photosynthetic efficiency under reduced solar irradiance and acclimates well to shading tolerance. The photosynthetic and antioxidant responses of winter wheat to low light levels could be important for winter wheat cultivation and productivity. and Y. Zheng ... [et al.].
Acrylamide (AA) is a highly reactive organic compound capable of polymerization to form polyacrylamide, which is commonly used throughout a variety of industries. Given its toxic effect on humans and animals, the last 20 years have seen an increased interest in research devoted to the AA. One of the main sources of AA is food. AA appears in heated food following the reaction between amino acids and reduced sugars. Large concentrations of AA can be found in popular staples such as coffee, bread or potato products. An average daily consumption of AA is between 0.3-2.0 μg/kg b.w. Inhalation of acrylamide is related with occupational exposure. AA delivered with food is metabolized in the liver by cytochrome P450. AA biotransformation and elimination result in formation of toxic glycidamide (GA). Both, AA and GA can be involved in the coupling reaction with the reduced glutathione (GSH) forming glutathione conjugates which are excreted with urine. Biotransformation of AA leads to the disturbance in the redox balance. Numerous research proved that AA and GA have significant influence on physiological functions including signal propagation in peripheral nerves, enzymatic and hormonal regulation, functions of muscles, reproduction etc. In addition AA and GA show neurotoxic, genotoxic and cancerogenic properties. In 1994, International Agency for Research on Cancer (IARC) classified acrylamide as a potentially carcinogenic substance to human., M. Semla, Z. Goc, M. Martiniaková, R. Omelka, G. Formicki., and Obsahuje bibliografii
Objectives of the study were to investigate impact of ischemic preconditioning (Ipre) and sulforaphane (SFN) and combination of them on nuclear factor 2 erythroid related factor 2 (Nrf2) gene and its dependent genes, heme oxygenase-1 (HO1) and NADPHquinone oxidoreductase1 (NQO-1) and inflammatory cytokines TNF-α, IL1β, and intercellular adhesion molecule-1 (ICAM1) and caspase-3 in renal ischemia/reperfusion (I/R) injury. Ninety male Sprague Dawely rats were classified into 5 groups (each consists of 18 rats): sham, control, Ipre, sulforaphane and Sulfo+Ipre. Each group was subdivided into 3 subgroups each containing 6 rats according to time of harvesting kidney and taking blood samples; 24 h, 48 h, and 7 days subgroups. Renal functions including serum creatinine, BUN were measured at basal conditions and by the end of experiment. Expression of Nrf2, HO-1, NQO-1, TNF-α, IL-1β, and ICAM-1 was measured by real time PCR in kidney tissues by the end of experiment. Also, immunohistochemical localization of caspase-3 and chemical assay of malondialdehyde (MDA), GSH and SOD activity were measured in kidney tissues. Both Ipre and SFN improved kidney functions, enhanced the expression of Nrf2, HO-1, and NQO-1, attenuated the expression of inflammatory (TNF-α, IL-1, and ICAM-1) and apoptotic (caspase-3) markers. However, the effect of sulforaphane was more powerful than Ipre. Also, a combination of them caused more improvement in antioxidant genes expression and more attenuation in inflammatory genes but not caspase-3 than each one did separately. Sulforaphane showed more powerful effect in renoprotection against I/R injury than Ipre as well as there might be a synergism between them at the molecular but not at the function level., A. A. Shokeir, N. Barakat, A. M. Hussein, A. Awadalla, A. M. Harraz, S. Khater, K. Hemmaid, A. I. Kamal., and Obsahuje bibliografii
Adiponectin acts as an endogenous antithrombotic factor. However, the mechanisms underlying the inhibition of platelet aggregation by adiponectin still remain elusive. The present study was designed to test whether adiponectin inhibits platelet aggregation by attenuation of oxidative/nitrative stress. Adult rats were fed a regular or high-fat diet for 14 weeks. The platelet was immediately separated and stimulated with recombinant full-length adiponectin (rAPN) or not. The platelet aggregation, nitric oxide (NO) and superoxide production, endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) expression, and antioxidant capacity were determined. Treatment with rAPN inhibited hyperlipidemia- induced platelet aggregation (P<0.05). Interestingly, total NO, a crucial molecule depressing platelet aggregation and thrombus formation , was significantly reduced, rather than increased in rAPN-treated platelets. Treatment with rAPN markedly decreased superoxide production (-62 %, P<0.05) and enhanced antioxidant capacity (+38 %, P<0.05) in hyperlipidemic platelets. Hyperlipidemia-induced reduced eNOS phosphorylation and increased iNOS expression were significantly reversed following rAPN treatment (P<0.05, P<0.01, respectively). Taken together, these data suggest that adiponectin is an adipokine that suppresses platelet aggregation by enhancing eNOS activation and attenuating oxidative/nitrative stress including blocking iNOS expression and superoxide production., W.-Q. Wang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
We investigated the effects of telmisartan, the blocker of angiotensin II receptor 1, on the regulation of systolic blood pressure (SBP) and oxidative stress through endothelial nitric oxide (NO) release in spontaneously hypertensive rats (SHRs). SHRs randomly received placebo, oral feeding of telmisartan (5 mg/kg or 10 mg/kg) every day and Wistar-Kyoto rats (WKYs) served as normotensive control. The SBP of rat was measured before and weekly thereafter. After a total of 8-week treatment, rats were killed for experimental measurements. Parameters that subject to measurements in isolated aorta endothelial cells include: NO concentration, protein expression levels of angiotensin II receptor 1, nitrotyrosine, 8-isoprostane, SOD, PI3K, Akt, AMPK and eNOS. In addition, L-NMMA, a general inhibitor of nitric oxide synthase, was also applied to test the inhibition of NO concentration. We found that SBPs were significantly lower in telmisartan therapy group than in placebo treated hypertensive rats and WKYs (p<0.05). The NO concentration was significantly higher in telmisartan-treated group with increased activity of the PI3K/Akt pathway and activated eNOS signaling. Blockade of Akt activity reversed such effects. Activation of AMPK also contributed to the phosphorylation of eNOS. L-NMMA treatment reduced less NO concentration in SHR rats than the telmisartan co-treated groups. Oxidative stress in SHRs was also attenuated by telmisartan administration, shown by reduced formation of nitrotyrosine, 8-isoprostane, and recovered SOD protein level. Telmisartan enhanced NO release by activating the PI3K/Akt system, AMPK phosphorylation and eNOS expression, which attenuated the blood pressure and oxidative stress in SHRs., L. Xu, Y. Liu., and Obsahuje seznam literatury
Altered Ca2+ handling may be responsible for the development of cardiac contractile dysfunctions with advanced age. In the present study, we investigated the roles of oxidative damage to sarcoplasmic reticulum (SR) and expression of Ca2+-ATPase (SERCA 2a) and phospholamban in age-associated dysfunction of cardiac SR. SR vesicles were prepared from hearts of 2-, 6-, 15-, and 26-month-old Wistar rats. Although activity of Ca2+-ATPase decreased with advancing age, no differences in relative amounts of SERCA 2a and phospholamban protein were observed. On the other hand, significant accumulation of protein oxidative damage occurred with aging. The results of this study suggest that agerelated alteration in Ca2+-ATPase activity in the rat heart is not a consequence of decreased protein levels of SERCA 2a and phospholamban, but could arise from oxidative modifications of SR proteins. Cellular oxidative damage caused by reactive oxygen species could contribute to age-related alternations in myocardial relaxation., E. Babušíková ... [et al.]., and Obsahuje seznam literatury