Telmisartan is an angiotensin receptor blocker (ARB) and a selective peroxisome proliferator activated receptor gamma (PPARG) modulator. Recently, we tested metabolic effects of telmisartan (5 mg/kg body weight) in spontaneously hypertensive rats (SHR) fed a diet containing 60 % fructose, a widely used model of the metabolic syndrome. Surprisingly, we observed acute toxic effects of telmisartan. Rats lost body weight rapidly and died within 2 to 3 weeks due to bleeding into the upper gastrointestinal tract. SHR fed a high fructose diet and treated with telmisartan exhibited rapid decrease in blood pressure when compared to the SHR fed a high fructose diet and treated with valsartan. Concentrations of both unconjugated telmisartan and telmisartan glucuronide in the liver of SHR rats fed a high fructose diet were approximately 4 fold higher when compared to Brown Norway (BN) rats fed the same diet. Plasma concentrations of unconjugated telmisartan in the SHR were about 5 fold higher when compared to BN rats while plasma levels of telmisartan glucuronide were similar between the strains. Testing of other rat strains, diets, and the ARB valsartan showed that toxic effects of telmisartan in combination with high fructose diet are specific for the SHR. These results are consistent with the possibility that in some circumstances, SHR are predisposed to telmisartan toxicity possibly because of a genetically determined disturbance in telmisartan metabolism.
We investigated the effects of telmisartan, the blocker of angiotensin II receptor 1, on the regulation of systolic blood pressure (SBP) and oxidative stress through endothelial nitric oxide (NO) release in spontaneously hypertensive rats (SHRs). SHRs randomly received placebo, oral feeding of telmisartan (5 mg/kg or 10 mg/kg) every day and Wistar-Kyoto rats (WKYs) served as normotensive control. The SBP of rat was measured before and weekly thereafter. After a total of 8-week treatment, rats were killed for experimental measurements. Parameters that subject to measurements in isolated aorta endothelial cells include: NO concentration, protein expression levels of angiotensin II receptor 1, nitrotyrosine, 8-isoprostane, SOD, PI3K, Akt, AMPK and eNOS. In addition, L-NMMA, a general inhibitor of nitric oxide synthase, was also applied to test the inhibition of NO concentration. We found that SBPs were significantly lower in telmisartan therapy group than in placebo treated hypertensive rats and WKYs (p<0.05). The NO concentration was significantly higher in telmisartan-treated group with increased activity of the PI3K/Akt pathway and activated eNOS signaling. Blockade of Akt activity reversed such effects. Activation of AMPK also contributed to the phosphorylation of eNOS. L-NMMA treatment reduced less NO concentration in SHR rats than the telmisartan co-treated groups. Oxidative stress in SHRs was also attenuated by telmisartan administration, shown by reduced formation of nitrotyrosine, 8-isoprostane, and recovered SOD protein level. Telmisartan enhanced NO release by activating the PI3K/Akt system, AMPK phosphorylation and eNOS expression, which attenuated the blood pressure and oxidative stress in SHRs., L. Xu, Y. Liu., and Obsahuje seznam literatury