Adiponectin acts as an endogenous antithrombotic factor. However, the mechanisms underlying the inhibition of platelet aggregation by adiponectin still remain elusive. The present study was designed to test whether adiponectin inhibits platelet aggregation by attenuation of oxidative/nitrative stress. Adult rats were fed a regular or high-fat diet for 14 weeks. The platelet was immediately separated and stimulated with recombinant full-length adiponectin (rAPN) or not. The platelet aggregation, nitric oxide (NO) and superoxide production, endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) expression, and antioxidant capacity were determined. Treatment with rAPN inhibited hyperlipidemia- induced platelet aggregation (P<0.05). Interestingly, total NO, a crucial molecule depressing platelet aggregation and thrombus formation , was significantly reduced, rather than increased in rAPN-treated platelets. Treatment with rAPN markedly decreased superoxide production (-62 %, P<0.05) and enhanced antioxidant capacity (+38 %, P<0.05) in hyperlipidemic platelets. Hyperlipidemia-induced reduced eNOS phosphorylation and increased iNOS expression were significantly reversed following rAPN treatment (P<0.05, P<0.01, respectively). Taken together, these data suggest that adiponectin is an adipokine that suppresses platelet aggregation by enhancing eNOS activation and attenuating oxidative/nitrative stress including blocking iNOS expression and superoxide production., W.-Q. Wang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The influence of steroid hormones on plasma lipids and lipoproteins was confirmed by many studies. On the other hand, the effect of plasma lipids on metabolism of steroid hormones has so far not been examined. The objective of this research project was to determine (1) the levels of cortisol, testosterone, estradiol, dehydroepiandrosterone (DHEA), its sulfate (DHEAS), 7-hydroxylated DHEA, and SHBG in men suffering from mixed hyperlipidemia (HPL) (n=23, age 46.1±7.9 years) in comparison with healthy male volunteers (n=17, age 45.1±15.6 years); (2) whether therapy with fenofibrate influences the levels of the above mentioned steroids and SHBG; (3) what are the correlations between lipids and steroids in healthy males and HPL patients before and after therapy. Compared to controls, untreated patients had significantly higher estradiol and free testosterone index (IFT) levels (p<0.0003 and p<0.02, respectively) and significantly lower SHBG (p<0.02). Due to fenofibrate therapy, a significant decrease of TC, TG, and DHEA levels occurred (mean decrease: 14 %, 52 % and 21 %, respectively). Triglycerides correlated negatively with testosterone and SHBG in healthy subjects. HDL-C
correlated positively and consequently, atherogenic index correlated negatively with 7-hydroxylated epimers of DHEAin treated patients. This is the first study dealing with the influence of fenofibrate administration on the steroid levels. Taking together, the most important is the finding of decrease DHEA levels after fenofibrate therapy. It could be explained, at least in part, by the effect of the fenofibrateon on the biosynthesis of DHEA and its regulation.
Endogenous secretory receptor (esRAGE) for advanced glycation end-product (AGE) acts as decoy for AGEs. The AGE-to-esRAGE ratio was hypothesized to be implicated in diabetic vasculopathy. We investigated an associatio n of esRAGE and methylglyoxal- adducts serum level, as well as AGE-to-esRAGE ratio in subpopulation of diabetic patients with or without concomitant hyperlipidemia and macrovascular disease in history. In diabetes with concomitant hyperlipidemia esRAGE was significantly decreased compared to hyperlipidemia with normal glucose metabolism (0.306±0.2 vs. 0.367± 0.1; p=0.019) or diabetes alone (0.306±0.2 vs. 0.404±0.1; p = 0.004). High AGE/esRAGE ratio, found in diabetic patients with hyperlipidemia, pointed to increased production of AGEs and low expression of esRAGE. In multivariable analysis adjusted for several confounding factors, increased AGE/esRAGE ratio was re cognized as a high risk for vascular disease outcomes., Z. Turk, S. Ljubić, J. Boras., and Obsahuje bibliografii a bibliografické odkazy
Apolipoprotein (apo) B-100 is a key protein compound of plasma lipid metabolism. This protein, as a sole component of LDL particles, to a great extent controls the homeostasis of LDL cholesterol in the plasma. Therefore, this protein and its structural variants play an important role in development of hyperlipidemia and atherosclerosis. Intensive research into the structure and biological functions of apoB-100 has led to identification of its complete structure as well as the responsible binding sites. With the development of the methods of molecular biology, some structural variants of the apoB-100 protein that directly affect its binding properties have been described. These are mutations leading to amino acid substitution at positions 3500 (R3500Q and R3500W) and 3531 (R3531C) that have been shown to decrease the binding affinity of apoB-100 in vitro. However, only the former mutations have been unequivocally demonstrated to cause hyperlipidemia in vivo. This minireview is aimed to discuss the impact of apoB-100 and its structural variants on plasma lipid metabolism and development of hyperlipidemia., M. Vrablík, R. Češka, A. Hořínek., and Obsahuje bibliografii
Silymarin and silybin are widely used for their hepatoprotective properties. Our previous studies confirm positive effect of silymarin on lipoprotein profile and lipid homeostasis. Advanced drug forms may improve the bioavailability of these compounds. In this study, we investigate the effects of silybin in different drug forms (standardized silybin, micronized silybin, and silybin in form of phytosomes) on dyslipidemia and glucose metabolism in hereditary hypertriglyceridemic (HHTg) rats. Male HHTg rats were divided into four groups of seven animals and were fed by experimental diets. Silybin significantly decreased serum level of triglycerides in groups of rats fed by standardized silybin and silybin in form of phytosomes compared to control group. Results show that silybin did not affect the total cholesterol level, but significantly increased the levels of HDL cholesterol in all groups of animals. Silybin in a standardized form had the highest hypotriglyceridemic effect. On the other hand, the micronized form has caused the highest increase of protective HDL and most significantly decreased glucose and insulin levels. Our results suggest that silybin is probably responsible for some positive properties of silymarin. Subsequent dose-dependent studies of silybin action may reveal the intensity of its positive effects on lipid and glucose parameters., M. Poruba, Z. Matušková, L. Kazdová, O. Oliyarnyk, H. Malínská, I. Tozzi di Angelo, R. Večeřa., and Obsahuje bibliografii