Adiponectin acts as an endogenous antithrombotic factor. However, the mechanisms underlying the inhibition of platelet aggregation by adiponectin still remain elusive. The present study was designed to test whether adiponectin inhibits platelet aggregation by attenuation of oxidative/nitrative stress. Adult rats were fed a regular or high-fat diet for 14 weeks. The platelet was immediately separated and stimulated with recombinant full-length adiponectin (rAPN) or not. The platelet aggregation, nitric oxide (NO) and superoxide production, endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) expression, and antioxidant capacity were determined. Treatment with rAPN inhibited hyperlipidemia- induced platelet aggregation (P<0.05). Interestingly, total NO, a crucial molecule depressing platelet aggregation and thrombus formation , was significantly reduced, rather than increased in rAPN-treated platelets. Treatment with rAPN markedly decreased superoxide production (-62 %, P<0.05) and enhanced antioxidant capacity (+38 %, P<0.05) in hyperlipidemic platelets. Hyperlipidemia-induced reduced eNOS phosphorylation and increased iNOS expression were significantly reversed following rAPN treatment (P<0.05, P<0.01, respectively). Taken together, these data suggest that adiponectin is an adipokine that suppresses platelet aggregation by enhancing eNOS activation and attenuating oxidative/nitrative stress including blocking iNOS expression and superoxide production., W.-Q. Wang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The aim of the present research was to study the uptake of DHEAS, and to establish the intracrine capacity of human platelets to produce sex steroid hormones. The DHEAS transport was evaluated through the uptake of [3 H]-DHEAS in the presence or absence of different substrates through the organic anion transporting polypeptide (OATP) family. The activity of sulfatase enzyme was evaluated, and the metabolism of DHEAS was measured by the conversion of [3 H]-DHEAS to [ 3 H]-androstenedione, [3 H]-testosterone, [3 H]-estrone and [ 3 H]-17β-estradiol. Results indicated the existence in the plasma membrane of an OATP with high affinity for DHEAS and estrone sulphate (E1 S). The platelets showed the capacity to convert DHEAS to active DHEA by the steroid-sulfatase activity. The cells resulted to be a potential site for androgens production, since they have the capacity to produce androstenedione and testosterone; in addition, they reduced [3 H]-estrone to [3 H]-17β- estradiol. This is the first demonstration that human platelets are able to import DHEAS and E1 S using the OATP family and to convert DHEAS to active DHEA, and to transform E1 S to 17β- estradiol., A. Garrido ... [et al.]., and Obsahuje seznam literatury
Rheological, haemostatic, endothelial and platelet abnormalities appear to play a role in the thrombotic complications of hypertension. This prothrombotic/hypercoagulable state in hypertension may contribute to the increased risk and severity of target organ damage. It can be induced by the activated reninangiotensin system (RAS), with abnormalities in endothelial and platelet function, coagulation and fibrinolysis. Treatment of uncomplicated essential hypertension by RAS targeting antihypertensive therapy could result in a reversal of prothrombotic abnormalities, contributing to a reduction of thrombosis-related complications. Since angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) have two distinct mechanisms of RAS interruption, it is hypothesized that each therapy might have different impact on the prothrombotic state in hypertensive patients. Some studies demonstrate a beneficial effect of both ACE inhibitors and ARBs on prothrombotic state, in addition to their efficacy to normalize elevated blood pressure. The potentially antithrombotic effect of the RAS inhibiting agents may in turn support the preservation of cardiovascular function. Available data may offer an additional explanation for the efficacy of the RAS targeting agents in the prevention of cardiovascular events in patients with atherosclerotic vascular disease., A. Remková, M. Remko., and Obsahuje bibliografii a bibliografické odkazy