Genes for adiponectin and resistin are candidate genes of insulin resistance and type 2 diabetes mellitus. The aim of our study was to determine the frequency of single nucleotide polymorphisms (SNP) 45T>G and 276G>T of the adiponectin gene and 62G>A and -180C>G of the resistin gene in patients with obesity (OB), anorexia nervosa (AN) and in control healthy normal-weight women (NW) and to study the influence of particular genotypes on serum concentrations of these hormones and on insulin sensitivity. Serum adiponectin, resistin, tumor necrosis factor alpha (TNF-alpha), insulin, cholesterol, glycated hemoglobin (HbA1c) and blood glucose levels were measured in 77 patients with OB, 28 with AN and 38 NW. DNA analysis was carried out by polymerase chain reaction with restriction analysis of PCR product. The presence of SNP ADP+276 G>T allele was accompanied by higher cholesterol levels in AN patients, higher adiponectin concentrations in OB patients and lower HbA1c levels in NW. SNP of the resistin gene 62G>A was associated with lower HbA1c in NW and higher cholesterol concentrations in OB group. The carriers of the minor G allele in the position -180 of the resistin gene within AN group had significantly higher BMI relative to non-carriers. We conclude that polymorphisms in adiponectin and resistin genes can contribute to metabolic phenotype of patients with obesity and anorexia nervosa., J. Křížová, M. Dolinková, Z. Lacinová, Š. Sulek, R. Doležalová, J. Housová, J. Krajíčková, D. Haluzíková, L. Bošanská, H. Papežová, M. Haluzík., and Obsahuje bibliografii a bibliografické odkazy
Serum levels of adiponectin were measured in patients with benign prostatic hyperplasia and prostate cancer of pT2 and pT3 stage. Adiponectin ELISA assay, immunohistochemistry, and selected metabolic and biochemical parameters measurement was performed in 25 patients with benign prostatic hyperplasia and 43 with prostate cancer (17 patients with organ-confined and 26 patients with locally advanced disease). Serum adiponectin levels did not differ between prostate benign hyperplasia and cancer clinical stage T2, but was significantly higher in pT3 relative to pT2 group (14.51± 4.92 vs. 21.41±8. 12, P = 0.003). Tissue immunohistochemistry showed enhanced staining in neoplastic prostate glands and intraepithelial neoplasia relative to benign prostatic hyperplasia without distinction between disease grade and stage. Serum adiponectin levels are higher in locally advanced relative to organ-confined prostate cancer and may thus serve as an auxiliary marker providing further improvement for discrimination between pT2 and pT3 stages., D. Housa, Z. Vernerová, J. Heráček, B. Procházka, P. Čechák, J. Kuncová, M. Haluzík., and Obsahuje bibliografii a bibliografické odkazy
Adiponectin (APN), an adipose tissue-excreted adipokine, plays protective roles in metabolic and cardiovascular diseases. In this study, the effects and mechanisms of APN on biological functions of rat vascular endothelial progenitor cells (VEPCs) were investigated in vitro . After administrating APN in rat VEPCs, the proliferation was measured by methyl thiazolyl tetrazolium (MTT) method, the apoptotic rate was test by Flow cytometry assay, mRNA expression of B-cell lymphoma-2 (Bcl-2) and vascular endothelial growth factor (VEGF) was determined by real-time reverse transcriptase polymerase chain reaction (RT-PCR), and protein expression of mechanistic target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 (pSTAT3) was analyzed by Western blot. It was suggested that APN promoted the optical density (OD) value of VEPCs, enhanced mRNA expression of Bcl-2 and VEGF, and inhibited cell apoptotic rate. Furthermore, protein expression of pSTAT3 was also increased in the presence of APN. Moreover, APN changed-proliferation, apoptosis and VEGF expression of VEPCs were partially suppressed after blocking the mTOR-STAT3 signaling pathway by the mTOR inhibitor XL388. It was indicated that APN promoted biological functions of VEPCs through targeting the mTOR-STAT3 signaling pathway., Xiaoying Dong, Xia Yan, Wei Zhang, Shengqiu Tang., and Obsahuje bibliografii
Adiponectin acts as an endogenous antithrombotic factor. However, the mechanisms underlying the inhibition of platelet aggregation by adiponectin still remain elusive. The present study was designed to test whether adiponectin inhibits platelet aggregation by attenuation of oxidative/nitrative stress. Adult rats were fed a regular or high-fat diet for 14 weeks. The platelet was immediately separated and stimulated with recombinant full-length adiponectin (rAPN) or not. The platelet aggregation, nitric oxide (NO) and superoxide production, endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) expression, and antioxidant capacity were determined. Treatment with rAPN inhibited hyperlipidemia- induced platelet aggregation (P<0.05). Interestingly, total NO, a crucial molecule depressing platelet aggregation and thrombus formation , was significantly reduced, rather than increased in rAPN-treated platelets. Treatment with rAPN markedly decreased superoxide production (-62 %, P<0.05) and enhanced antioxidant capacity (+38 %, P<0.05) in hyperlipidemic platelets. Hyperlipidemia-induced reduced eNOS phosphorylation and increased iNOS expression were significantly reversed following rAPN treatment (P<0.05, P<0.01, respectively). Taken together, these data suggest that adiponectin is an adipokine that suppresses platelet aggregation by enhancing eNOS activation and attenuating oxidative/nitrative stress including blocking iNOS expression and superoxide production., W.-Q. Wang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Adiponectin is an adipokine increasing glucose and fatty acid metabolism and improving insulin sensitivity. The aim of this study was to investigate the role of adiponectin in the regulation of adipocyte lipolysis. Human adipocytes isolated from biopsies obtained during surgical operations from 16 non-obese and 17 obese subjects were incubated with 1) human adiponectin (20 μg/ml) or 2) 0.5 mM AICAR - activator of AMPK (adenosine monophosphate activated protein kinase). Following these incubations, isoprenaline was added (10-6 M) to investigate the influence of adiponectin and AICAR on catecholamine-induced lipolysis. Glycerol concentration was measured as lipolysis marker. We observed that adiponectin suppressed spontaneous lipolysis by 21 % and isoprenaline-induced lipolysis by 14 % in non-obese subjects. These effects were not detectable in obese individuals, but statistically significant differences in the effect of adiponectin between ob ese and non-obese were not revealed by two way ANOVA test. The inhibitory effect of AICAR and adiponectin on lipolysis was reversed by Compound C. Our results suggest, that adiponectin in physiological concentrations inhibits spontaneous as well as catecholamine-induced lipolysis. This effect might be lower in obese individuals and this regulation seems to involve AMPK., Z. Wedellová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Wnt1 inducible protein-1 signaling pathway (WISP-1) is a relatively new adipokine involved in many cellular processes, including epithelial mucosa healing. The aim of the study was to compare circulating levels of WISP-1 and other selected adipokines [adiponectin, resistin and retinol-binding protein 4 (RBP-4)] in children with inflammatory bowel disease (IBD) with healthy controls and to investigate possible differences between Crohn's disease patients. (CD) or ulcerative colitis (UC). The study was performed as a case-control study. In addition to adipokines, anthropometric, lipid parameters, markers of inflammation or disease activity were evaluated in all participants. Compared to healthy controls (n=20), significantly lower levels of adiponectin and higher levels of resistin and WISP-1 were found in patients with IBD (n=58). Elevation of WISP-1 was detected only in the CD group (n=31). There were no differences in RBP-4 levels between the groups. Adiponectin, WISP-1 and RBP-4 were independently associated with body mass index only, resistin levels were associated with C-reactive protein levels and leukocyte counts. Adverse adipokines production reflects presence of dysfunctional fat tissue in IBD patients. Higher levels of WISP-1 in CD compared to patients with UC may indicate a specific role for mesenteric adipose tissue in WISP-1 production.
Increases in resting energy expenditure (REE) likely contribute to weight loss in various chronic diseases. In chronic obstructive pulmonary disease (COPD), relationships between the ventilatory impairment and increased REE, and between disturbances in adipokines and weight loss were previously described. Therefore, we investigated serum levels and adipose tissue expression of leptin and adiponectin, and their relationships to REE in patients with COPD. In 44 patients with stable COPD (38 male; age 62.3±7.2 years), REE was assessed using indirect calorimetry. Subcutaneous adipose tissue samples were analyzed using realtime PCR. From underweight [n=9; body mass index (BMI) <20.0 kg.m−2 ], to normal weight-overweight (n=24, BMI=20.0- 29.9 kg.m−2 ) and obese patients (n=11; BMI≥30 kg.m−2 ), REE adjusted for body weight decreased (32.9±6.1 vs. 26.2±5.8 vs. 23.9±6.6 kcal.kg−1 .24 h−1 , p=0.006), serum levels and adipose tissue expression of leptin increased (p<0.001 for both), and serum and adipose tissue adiponectin decreased (p<0.001; p=0.004, respectively). REE was inversely related to serum and adipose tissue leptin (R=−0.547, p<0.001; R=−0.458, p=0.002), and directly to serum adiponectin (R=0.316, p=0.039). Underweight patients had increased REE compared to normal weight-overweight patients, in association with reductions in serum and adipose tissue leptin, and increased serum adiponectin, suggesting a role of adipokines in energy imbalance in COPD-related cachexia, M. Brúsik ... [et al.]., and Obsahuje seznam literatury
The aim of this study was to explore the changes in the adipokines leptin and adiponectin in obese patients with type 1 diabetes mellitus (T1DM) who underwent seven days of fasting and 21 days of low-calorie diet (LCD). The plasma leptin and adiponectin concentrations were measured in 14 obese patients with T1DM at baseline, immediately after 7 days of fasting, and after 21 days of LCD. 13 non-obese patients with T1DM were studied only after an overnight fasting. Bioimpedance technique was used for determination of body composition. Obese T1DM patients lost 6.0 kg (6.0; 6.8) (median, 25 %; 75 %) and decreased their fat tissue after fasting and LCD. Plasma leptin in obese T1DM was significantly higher than in non-obese T1DM patients: 9.10 (5.06; 25.89) vs. 1.71 (1.12; 7.08) μg ∙ l-1 and transiently decreased immediately after fasting: 3.45 μg ∙ l-1 (1.47; 7.00), (P<0.05). Adiponectin/leptin ratio in obese T1DM was significantly lower than in non-obese T1DM patients: 0.67 (0.57; 1.49) vs. 3.50 (2.46; 6.30) ∙ 103 and transiently increased immediately after fasting: 2.22 (1.26; 3.24) ∙ 103, (P<0.05). We conclude that obese patients with T1DM are characterized by hyperleptinemia that is reduced by prolonged fasting, but only slightly affected by low calorie diet., F. Musil, V. Blaha, A. Ticha, R. Hyspler, M. Haluzik, J. Lesna, A. Smahelova, L. Sobotka., and Obsahuje bibliografii
Critical illness induces among other events production of proinflammatory cytokines that in turn interfere with insulin signaling cascade and induce insulin resistance on a postreceptor level. Recently, local renin-angiotensin system of adipose tissue has been suggested as a possible contributor to the development of insulin resistance in patients with obesity. The aim of our study was to determine local changes of the renin-angiotensin system of subcutaneous and epicardial adipose tissue during a major cardiac surgery, which may serve as a model of an acute stress potentially affecting endocrine function of adipose tissue. Ten patients undergoing elective cardiac surgery were included into the study. Blood samples and samples of subcutaneous and epicardial adipose tissue were collected at the beginning and at the end of the surgery. Blood glucose, serum insulin and adiponectin levels were measured and mRNA for angiotensinogen, angiotensin-converting enzyme and angiotensin II type 1 receptor were determined in adipose tissue samples using RT PCR. Cardiac surgery significantly increased both insulin and blood glucose levels suggesting the development of insulin resistance, while serum adiponectin levels did not change. Expression of angiotensinogen mRNA significantly increased in epicardial adipose tissue at the end of surgery relative to baseline but remained unchanged in subcutaneous adipose tissue. Fat expression of angiotensin-converting enzyme and type 1 receptor for angiotensin II were not affected by surgery. Our study suggests that increased angiotensinogen production in epicardial adipose tissue may contribute to the development of postoperative insulin resistance., T. Roubíček, M. Dolinková, J. Bláha, D. Haluzíková, L. Bošanská, M. Mráz, J. Křemen, M. Haluzík., and Obsahuje bibliografii a bibliografické odkazy
PPAR-α agonists improve insulin sensitivity in rodent models of obesity/insulin resistance, but their effects on insulin sensitivity in humans are less clear. We measured insulin sensitivity by hyperinsulinemic-isoglycemic clamp in 10 obese females with type 2 diabetes before and after three months of treatment with PPAR-α agonist fenofibrate and studied the possible role of the changes in endocrine function of adipose tissue in the metabolic effects of fenofibrate. At baseline, body mass index, serum glucose, triglycerides, glycated hemoglobin and atherogenic index were significantly elevated in obese women with type 2 diabetes, while serum HDL cholesterol and adiponectin concentrations were significantly lower than in the control group (n=10). No differences were found in serum resistin levels between obese and control group. Fenofibrate treatment decreased serum triglyceride concentrations, while both blood glucose and glycated hemoglobin increased after three months of fenofibrate administration. Serum adiponectin or resistin concentrations were not significantly affected by fenofibrate treatment. All parameters of insulin sensitivity as measured by hyperinsulinemic-isoglycemic clamp were significantly lower in an obese diabetic group compared to the control group before treatment and were not affected by fenofibrate administration. We conclude that administration of PPAR-α agonist fenofibrate for three months did not significantly affect insulin sensitivity or resistin and adiponectin concentrations in obese subjects with type 2 diabetes mellitus. The lack of insulin-sensitizing effects of fenofibrate in humans relative to rodents could be due to a generally lower PPAR-α expression in human liver and muscle., K. Anderlová, R. Doležalová, J. Housová, L. Bošanská, D. Haluzíková, J. Křemen, J. Škrha, M. Haluzík., and Obsahuje bibliografii a bibiografické odkazy