Reactive hyperemia (RH) in forearm muscle or skin microcirculation has been considered as a surrogate endpoint in clinical studies of cardiovascular disea e. We evaluated two potential confounders that might limit such use of RH, namely laterality of measurement and intake of non-steroidal anti-inflammatory drugs (NSAIDS). Twenty-three young non-smoking healthy adults were enrolled. In Experiment 1 (n=16), the RH elicited by 3 min of ischemia was recorded in the muscle (strain gauge plethysmography, hand excluded) and skin (laser Doppler imaging) of both forearms. In Experiment 2 (n=7), RH was determined in the dominant forearm only, one hour following oral acetylsalicylic acid (1 g) or placebo. In Experiment 1, peak RH was identical in both forearms, and so were the corresponding durations of responses. RH lasted significantly less in muscle than in skin (p=0.003), a hitherto unrecognized fact. In the skin, acetylsalicylate reduced duration (43 vs. 57.4 s for placebo, p=0.03), without affecting the peak response. In muscle, duration tended to decrease with acetylsalicylate (21.4 vs. 26.0 s with placebo, p=0.06) and the peak increase in blood flow was blunted (27.2 vs. 32.4 ml/min/100 ml tissue with placebo, p=0.003). We conclude that, when using RH as a surrogate endpoint in studies of cardiovascular disease, a confounding by laterality of measurement need not be feared, but NSAIDS may have an influence, although perhaps not on the peak response in the skin., G. Addor, A. Delachaux, B. Dischl, D. Hayoz, L. Liaudet, B. Waeber, F. Feihl., and Obsahuje bibliografii a bibliografické odkazy
Objectives of the study were to investigate impact of ischemic preconditioning (Ipre) and sulforaphane (SFN) and combination of them on nuclear factor 2 erythroid related factor 2 (Nrf2) gene and its dependent genes, heme oxygenase-1 (HO1) and NADPHquinone oxidoreductase1 (NQO-1) and inflammatory cytokines TNF-α, IL1β, and intercellular adhesion molecule-1 (ICAM1) and caspase-3 in renal ischemia/reperfusion (I/R) injury. Ninety male Sprague Dawely rats were classified into 5 groups (each consists of 18 rats): sham, control, Ipre, sulforaphane and Sulfo+Ipre. Each group was subdivided into 3 subgroups each containing 6 rats according to time of harvesting kidney and taking blood samples; 24 h, 48 h, and 7 days subgroups. Renal functions including serum creatinine, BUN were measured at basal conditions and by the end of experiment. Expression of Nrf2, HO-1, NQO-1, TNF-α, IL-1β, and ICAM-1 was measured by real time PCR in kidney tissues by the end of experiment. Also, immunohistochemical localization of caspase-3 and chemical assay of malondialdehyde (MDA), GSH and SOD activity were measured in kidney tissues. Both Ipre and SFN improved kidney functions, enhanced the expression of Nrf2, HO-1, and NQO-1, attenuated the expression of inflammatory (TNF-α, IL-1, and ICAM-1) and apoptotic (caspase-3) markers. However, the effect of sulforaphane was more powerful than Ipre. Also, a combination of them caused more improvement in antioxidant genes expression and more attenuation in inflammatory genes but not caspase-3 than each one did separately. Sulforaphane showed more powerful effect in renoprotection against I/R injury than Ipre as well as there might be a synergism between them at the molecular but not at the function level., A. A. Shokeir, N. Barakat, A. M. Hussein, A. Awadalla, A. M. Harraz, S. Khater, K. Hemmaid, A. I. Kamal., and Obsahuje bibliografii
The effect of the chronic and acute antioxidant tempol (superoxide dismutase mimetic) treatment on cardiac ischemic tolerance was investigated in adult male Wistar rats. The first experimental group was given tempol (1 mM) in drinking water for three weeks, the second group received tempol (100 mg/kg, i.v.) 10 min before test ischemia, and control rats received the same volume of solvent. Anesthetized open-chest animals (pentobarbitone 60 mg/kg, i.p.) were subjected to 20-min coronary artery occlusion and 3-h reperfusion for infarct size determination. Ventricular arrhythmias were monitored during ischemia and at the beginning (5 min) of reperfusion. Acute tempol administration shifted the time profile of ischemic arrhythmias to the later phase and significantly increased the number of ischemic and reperfusion premature ventricular complexes, respectively (504±127 and 84±21) as compared with the chronically treated group (218±36 and 47±7) or controls (197±26 and 31±7). Acute tempol-treated rats exhibited a tendency to decrease infarct size (P = 0.087). The mechanism of proarrhythmic tempol action during ischemia and reperfusion remains to be elucidated., J. Neckář, B. Ošťádal, F. Kolář., and Obsahuje bibliografii a bibliografické odkazy
AMP -activated protein kinase (AMPK) plays a role in metabolic regulation under stress conditions, and inadequate AMPK signaling may be also involved in aging process. The aim was to find out whether AMPK α 2-subunit deletion affects heart function and ische mic tolerance of adult and aged mice. AMPK α 2 -/- (KO) and wild type (WT) female mice were compared at the age of 6 and 18 months. KO mice exhibited subtle myocardial AMPK α 2-subunit protein level, but no difference in AMPK α 1-subunit was detected between the strains. Both α 1- and α 2-subunits of AMPK and their phosphorylation decreased with advanced age. Left ventricular fractional shortening was lower in KO than in WT mice of both age groups and this difference was maintained after high-fat feeding. Infarct size induced by global ischemia/reperfusion of isolated hearts was similar in both strains at 6 months of age. Aged WT but not KO mice exhibited improved ischemic tolerance compared with the younger group. High-fat feeding for 6 months during aging abolished the infarct size-reduction in WT without affecting KO animals; nevertheless, the extent of injury remained larger in KO mice. The results demonstrate that adverse effects of AMPK α 2-subunit deletion and high-fat feeding on heart function and myocardia l ischemic tolerance in aged female mice are not additive., K. Slámová, F. Papoušek, P. Janovská, J. Kopecký, F. Kolář., and Obsahuje bibliografii
Postconditioning (PostC) is a re cently discovered phenomenon whereby brief repetitive cycles of ischaemia with intermittent reperfusion following prolonged is chaemia elicit cardioprotection. This study investigated whether the age, genetic characteristics or number of repetitive cycles influenced the protective effect of PostC in mice. C57BL/6 floxed or non-floxed STAT-3 mice aged between 14-16 weeks (young) or 18-20 weeks (older) were perfused on a Langendorff apparatus and subjected to 35 min global ischaemia and 45 min reperfusion. PostC was elicited by either 3 (PostC-3) or 6 cycles (PostC-6) of 10s ischaemia and 10 s reperfusion. PostC-3 and PostC-6 in both young and older non-floxed mice reduced the myocar dial infarct size. In contrast, only PostC-3 reduced myocardial infarct size in young floxed mice. Neither PostC-3 nor PostC-6 reduced the in farct in older floxed mice. Our data reveal that genetic characteristics, a minute difference in age or the nu mber of postconditioning cycles are critical factors to be consid ered for the successful effect of ischaemic postconditioning in a murine model. Moreover, these factors should be taken into consideration for future experimental research or clinical applications of this protective phenomenon., S. J. Somers ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Quercetin, a polyphenolic compound present in various types of food, has been shown to exert beneficial effects in different cardiac as well as non-cardiac ischemia/reperfusion (I/R) models in adult animals. However, there is no evidence about the effects of quercetin on I/R injury in non-mature animals, despite the fact that efficiency of some interventions against I/R is agedependent. This study was aimed to investigate the effects of chronic quercetin treatment on I/R injury in juvenile and adult rat hearts. Juvenile (4-week-old) as well as adult (12-week-old) rats were treated with quercetin (20 mg/kg/day) for 4 weeks, hearts were excised and exposed to 25-min global ischemia followed by 40-min reperfusion. Functional parameters of hearts and occurrence of reperfusion arrhythmias were registered to assess the cardiac function. Our results have shown that quercetin improved post-ischemic recovery of LVDP, as well as recovery of markers of contraction and relaxation, +(dP/dt)max and -(dP/dt)max, respectively, in juvenile hearts, but not in adult hearts. Quercetin had no impact on incidence as well as duration of reperfusion arrhythmias in animals of both ages. We conclude that the age of rats plays an important role in heart response to quercetin treatment in the particular dose and duration of the treatment. Therefore, the age of the treated subjects should be taken into consideration when choosing the dose of quercetin and duration of its application in prevention and/or treatment of cardiovascular diseases., M. Bartekova, J. Radosinska, D. Pancza, M. Barancik, T. Ravingerova., and Obsahuje bibliografii
Ischemia can contribute to the inner ear pathology and hearing loss. To determine the susceptibility of inner and outer hair cells (IHCs/OHCs) to ischemic and post-ischemic period, we used organotypic cultures of the organ of Corti isolated from P3 rats as an in vitro model of inner ear ischemia (oxygen-glucose deprivation, OGD). We identified the hair cells (HCs) by phalloidin staining. The cells with damaged cellular membrane integrity were identified by propidium iodide (PI)-exclusion assay. The cells with fragmented chromosomal DNA were detected by TUNEL assay. Organotypic cultures were subjected to a mild (3 h duration) or severe (4 h duration ) OGD, followed by a recovery period of 21 h and 20 h, respectively. Mild OGD induced a loss of 10-20 % HCs, whereas severe OGD induced loss of 35 % HCs. We confirmed that OHCs are less vulnerable to OGD than IHCs. Of all missing OHCs, 80-90 % was lost during the OGD period and 10-20 % during the recovery period. In contrast, the loss of IHCs was equal during both experimental periods. The OGD period was mainly associated with PI-positive nuclei. TUNEL-positive nuclei were a minor frac tion during the OGD period and increased during the recovery period, indicating the progression of DNA fragmentation. Our results implicate a differential susceptibility of IHCs and OHCs during and after ischemia-like insult, which may be of therapeutic consequence., N. Amarjargal ... [et al.]., and Obsahuje seznam literatury
Although both lipophilic and more hydrophilic statins share the same pathway of the inhibition of HMG-CoA reductase, their pleiotropic cardioprotective effects associated with the ability to cross cellular membranes, including membranes of heart cells, may differ. To test this hypothesis, isolated rat hearts were Langendorff-perfused either with simvastatin (S, 10 μ mol/l) or pravastatin (P, 30 μ mol/l), 15 min prior to ischemia. Control untreated hearts (C) were perfused with perfusion medium only. Postischemic contractile dysfunction, reperfusion-induced ventricular arrhythmias and infarct size were investigated after exposure of the hearts to 30- min global isch emia and 2-h reperfusion. Both lipophilic S and hydrophilic P reduced the severity of ventricular arrhythmias (arrhythmia score) from 4.3±0.2 in C to 3.0±0 and 2.7±0.2 in S and P, respectively, (both P<0.05), decreased the duration of ventricular tachycardia and suppressed ventricular fibrillation. Likewise, the extent of lethal injury (infarct size) determined by tetrazolium staining and expressed in percentage of risk area, was significantly lower in both treated groups, moreover, the effect of P was more pronounced (27±2 % and 10±2 % in S and P groups, respectively, vs. 42±1 % in C; P<0.05). In contrast, only S, but not P, was able to improve postischemic recovery of left ventricular developed pressure (LVDP; 48±12 % of preischemic values vs. 25±4 % in C and 21± 7 % in P groups; P<0.05). Our results suggest that differences in water solubility of statins indicating a different ability to cross cardiac membranes may underlie their distinct cardioprot ective effects on myocardial stunning and lethal injury induced by ischemia/reperfusion., S. Čarnická ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The effect of blocking the first and rate-limiting step in renin-angiotensin cascade on the renal function in ischemia reperfusion injury has not been previously in vestigated. We investigated the effect of aliskiren, the first approved direct oral renin inhibitor, on the alterations in renal functional parameters in this condition. Wistar rats underwent left renal ischemia for 40 min. Group-1 received normal saline whereas Group-2 received aliskiren (30 mg/kg/day) by gavage for 6 days commencing one day before IRI. The hemodynamic an d tubular functions and gene expression of neutrophil gelatinase-associated lipocalin (NGAL) and plasminogen activating inhibitor (PAI-1) in the right and left kidneys were measured five days following the IRI. Comparing Group-1 and Group-2, the left renal blood flow was significantly higher in Group-2 (1.28±0.36 vs. 0.39±0.05, P=0.007). Left kidney glomerular filtration rate was also higher in Group-2 but did not reach statistical signif icance (0.18±0.05 vs. 0.10±0.02, P=0.07). The left renal FE Na was significantly lower in Group-2 (29.9±6.4 vs. 49.7±7.8, P=0.03). Aliskiren also caused a significant decrease in the gene expression of both NGAL and PAI-1 in the left ischemic kidney. In conclusions, the administration of aliskiren before and after IRI appears to have ameliorated the IRI effect on the total renal artery blood flow, and fractional excretion of sodium and gene expression of both NGAL and PAI-1 indicating a renoprotective effects in IRI., F. T. Hammad, S. Al-Salam, L. Lubbad., and Obsahuje bibliografii a bibliografické odkazy
We investigated the effects of in vivo treatment with the angiotensin-converting enzyme inhibitor (ACE-I) captopril and/or of in vitro administration of L-arginine on the metabolism and ischemia-reperfusion injury of the isolated perfused rat myocardium. Captopril (50 mg/l in drinking water, 4 weeks) raised the myocardial content of glycogen. After 25-min global ischemia, captopril treatment, compared with the controls, resulted in lower rates of lactate dehydrogenase release during reperfusion (8.58±1.12 vs. 13.39±1.88 U/heart/30 min, p<0.05), lower myocardial lactate contents (11.34±0.93 vs. 21.22±4.28 µmol/g d.w., p<0.05) and higher coronary flow recovery (by 25 %), and prevented the decrease of NO release into the perfusate during reperfusion. In control hearts L-arginine added to the perfusate (1 mmol/l) 10 min before ischemia had no effect on the parameters evaluated under our experimental conditions, presumably because of sufficient saturation of the myocardium with L-arginine. In the hearts of captopril-treated rats, L-arginine further increased NO production during reperfusion and the cGMP content before ischemia. Our results have shown that long-term captopril treatment increases the energy potential and has a beneficial effect on tolerance of the isolated heart to ischemia. L-arginine added into the perfusate potentiates the effect of captopril on the NO signaling pathway., J. Divišová, H. Vavřínková, M. Tutterová, L. Kazdová, E. Meschišvili., and Obsahuje bibliografii