Winter wheat is a grass species widely planted in northern and central China, where the increase of aerosols, air pollutants and population density are causing significant reduction in solar irradiance. In order to investigate the adaptation of winter wheat (Triticum aestivum L., cv. Yangmai 13) to low irradiance conditions occurring in the downstream plain of the Yangtze River (China), plants were subjected to four solar irradiance treatments (100%, 60%, 40%, and 20% of environmental incident solar irradiance). Significant increases in chlorophyll (Chl) and xanthophyll (Xan) pigments, and decreases in Chl a/b and Xan/Chl ratios were observed in plants under low light. Light-response curves showed higher net photosynthetic rates (PN) in fully irradiated plants, that also showed a higher light-compensation point. Shaded plants maintained high values of minimal fluorescence of dark-adapted state (F0) and maximum quantum efficiency of PSII photochemistry (Fv/Fm) that assess a lower degree of photoinhibition under low light. Reduced irradiance caused decreases in effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and nonphotochemical quenching coefficient (qN), and the promotion of excitation pressure of PSII (1 - qP). The activities of the antioxidant enzymes superoxide dismutase and peroxidase were high under reduced light whereas no light-dependent changes in catalase activity were observed. Thiobarbituric acid reactive species content and electrolyte leakage decreased under shaded plants that showed a lower photooxidative damage. The results suggest that winter wheat cv. Yangmai 13 is able to maintain a high photosynthetic efficiency under reduced solar irradiance and acclimates well to shading tolerance. The photosynthetic and antioxidant responses of winter wheat to low light levels could be important for winter wheat cultivation and productivity. and Y. Zheng ... [et al.].
Drought significantly constrains higher yield of alfalfa (Medicago sativa L.) in arid and semiarid areas all over the world. This study evaluated the responses of leaf cuticular wax constituents to drought treatment and their relations to gas-exchange indexes across six alfalfa cultivars widely grown in China. Water deficit was imposed by withholding water for 12 d during branching stage. Cuticular waxes on alfalfa leaves were dominated by primary alcohols (41.7-54.2%), alkanes (13.2-26.9%) and terpenes (17.5-28.9%), with small amount of aldehydes (1.4-3.4%) and unknown constituents (4.5-18.4%). Compared to total wax contents, the wax constituents were more sensitive to drought treatment. Drought decreased the contents of primary alcohol and increased alkanes in all cultivars. Alkane homologs, C25, C27, and C29, were all negatively correlated with photosynthetic rate, transpiration rate, stomatal conductance, and leaf water potential. Under drought conditions, both stomatal and nonstomatal factors were involved in controlling water loss from alfalfa leaves. No direct relationship was observed between wax contents and drought resistance among alfalfa cultivars. An increase in alkane content might be more important in improving drought tolerance of alfalfa under water deficit, which might be used as an index for selecting and breeding drought resistant cultivars of alfalfa., Y. Ni ... [et al.]., and Obsahuje bibliografii
To investigate the effect of light cue on the resetting of the peripheral clocks, we examined the resetting processes of clock genes (Per1, Per2, Bmal1, Cry1, Dec1, and Rev-erbα) in the liver and heart of rats after the feeding and light-dark (LD) reversal via a 24-h light period transition. The liver clock was reset quickly within 3 days, while the heart clock needed a longer time course of 5-7 days to be completely re-entrained. Moreover, the reentrainment of Per1 and Per2 in the liver clock was more rapid than that of the other four clock genes, suggesting the important role of these two clock genes in initiating the circadian resetting of the hepatic clock. However, the resetting rates of these two clock genes were as similar as the others in the heart clock. Therefore, the resetting mechanisms underlining these two peripheral clocks may be totally distinct. Furthermore, the reentrainment of the liver and heart clocks were relatively lengthened after the feeding and LD reversal via a light period transition compared to a dark period transition, suggesting a simultaneous shift of feeding schedule and the LD cycle may facilitate the circadian resetting in rats., T. Wu ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
In a field experiment, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Jinan 17 (a multiple-spike cultivar), were treated with 78% (S1), 50% (S2), and 10% (S3) of full sunshine (S0, control) from anthesis to maturity to determine the responses of photosynthetic characteristics and antioxidative enzyme activities in a flag leaf. Compared with S0 treatment, the chlorophyll (Chl) content and maximal efficiency of photosystem II (PSII) photochemistry (Fv/Fm) of flag leaves were enhanced in treatments S1 and S2. From 0 to 7 d post flowering, the Chl content and Fv/Fm in S3 were also higher than those in S0, but significantly lower than those in controls, respectively. With the increase of shading intensity, the effective quantum yield of PSII (ΦPSII) was promoted; whereas, the ratio of Chl a/b declined. Compared with S0, treatments S2 and S3 significantly suppressed the activities of superoxide dismutase (SOD) and peroxidase (POD), net photosynthetic rate (PN), and contents of total soluble sugar, nevertheless, S1 treatment showed positive effects on the above parameters. Under the same shading condition, Jinan 17 had larger Chl content and higher activities of PSII and antioxidative enzymes, but lower malondialdehyde (MDA) content than Tainong 18. The results indicated that multiple-spike cultivar was more advantageous for the Huang-Huai-Hai Plain, where shading problem occurs later during the growth period, than the large-spike cultivar, because of the lesser damage in a flag leaf and better photosynthetic function of the former one. Wheat plants under S1 shading condition had relatively high activities of antioxidative enzymes and a low degree of membrane lipid peroxidation, which was in favor of stress resistance, maintaining high PN duration, and accumulation of photosynthates in wheat plants., C. Xu ... [et al.]., and Obsahuje bibliografii