Gastric mucus plays an important role in gastric mucosal protection. Apart from its “barrier” function, it has been demonstrated that mucus protects gastric epithelial cells against toxic oxygen metabolites derived from the xanthine/xanthine oxidase system. In this study, we investigated the effect of malotilate and sucralfate (mucus production stimulators) and N-acetylcysteine (mucolytic agent) on ischemia/reperfusion-induced gastric mucosal injury. Gastric ischemia was induced by 30 min clamping of the coeliac artery followed by 30 min of reperfusion. The mucus content was determined by the Alcian blue method. Sucralfate (100 mg/kg), malotilate (100 mg/kg), and N-acetylcysteine (100 mg/kg) were given orally 30 min before surgery. Both sucralfate and malotilate increased the mucus production in control rats. On the other hand, N-acetylcysteine significantly decreased mucus content in control (sham) group. A significant decrease of mucus content was found in the control and the N-acetylcysteine pretreated group during the period of ischemia. On the other hand, sucralfate and malotilate prevented the decrease the content of mucus during ischemia. A similar result can be seen after ischemia/reperfusion. In the control group and N-acetylcysteine pretreated group a significant decrease of adherent mucus content was found. However, sucralfate and malotilate increased mucus production (sucralfate significantly). Sucralfate and malotilate also significantly protected the gastric mucosa against ischemia/reperfusion-induced injury. However, N-acetylcysteine significantly increased gastric mucosal injury after ischemia/reperfusion. These results suggest that gastric mucus may be involved in the protection of gastric mucosa after ischemia/reperfusion., J. Mojžiš, R. Hegedüšová, L. Mirossay., and Obsahuje bibliografii
Given the potential clinical benefit of inhibiting Na+/Ca2+ exchanger (NCX) activity dur ing myocardial ischemia reperfusion (I/R), pharmacological approaches have been pursued to both inhibit and clarify the importance of this exchanger. SEA0400 was reported to have a potent NCX selectivity. Thus, we examined the effect of SEA0400 on NCX currents and I/R induced intracellular Ca2+ overload in mouse ventricular myocytes using patch clamp techniques and fluorescence measurements. Ischemia significantly inhibited inward and outward NCX current (from -0.04±0.01nA to 0 nA at -100 mV; from 0.23±0.08 nA to 0.11±0.03 nA at +50 mV, n=7). Subsequent reperfusion not only restored the current rapidly but enhanced the current amplitude obviously, especially the outward currents (from 0.23±0.08 nA to 0.49±0.12 nA at +50 mV, n=7). [Ca2+]i, expressed as the ratio of Fura-2 fluorescence intensity, increased to 138±7 % (P<0.01) during ischemia and to 210±11 % (P<0.01) after reperfusion. The change of NCX current and the increase of [Ca 2+]i during I/R can be blocked by SEA0400 in a dose-dependent manner with an EC50 value of 31 nM and 28 nM for the inward and outward NCX current, respectively. The results suggested that SEA0400 is a potent NCX inhibitor, which can protect mouse cardiac myocytes from Ca2+ overload during I/R injuries., J. Wang, Z. Zhang, Y. Hu, X. Hou, Q. Cui, Y. Zang, C. Wang., and Obsahuje bibliografii a bibliografické odkazy
The aim of our study was to characterize resistance to ischemia/reperfusion (I/R) injury in Langendorff-perfused rat hearts and effectivity of ischemic preconditioning (PC) under condition of simulated acute hyperglycemia (SAHG) by perfusion of the hearts with Krebs-Henseleit (KH) solution with elevated glucose concentration (22 mmol/l). I/R injury was induced by 30- min coronary occlusion followed by 120-min reperfusion and PC by two cycles of 5-min occlusion/5-min reperfusion, prior to I/R. The severity of I/R injury was characterized by determination of the size of infarction (IS, expressed in % of area at risk size) and the amount of heart-type fatty acid binding protein (h-FABP, a marker of cell injury) released from the hearts to the effluent. Significantly smaller IS (8.8±1 %) and lower total amount of released h-FABP (1808±660 pmol) in PC group compared with IS 17.1±1.2 % (p<0.01) and amount of h-FABP (8803±2415 pmol, p<0.05) in the non-PC control hearts perfused with standard KH solution (glucose 11 mmol/l) confirmed protective effects of PC. In contrast, in SAHG groups, PC enhanced IS (21.4±2.2 vs. 14.3±1.3 %, p<0.05) and increased total amount of h-FABP (5541±229 vs. 3458±283 pmol, p<0.05) compared with respective non-PC controls. Results suggest that PC has negative effect on resistance of the hearts to I/R injury under conditions of elevated glucose in vitro., M. Zálešák, P. Blažíček, D. Pancza, V. Ledvényiová, M. Barteková, M. Nemčeková, S. Čarnická, A. Ziegelhöffer, T. Ravingerová., and Obsahuje bibliografii
a1_Statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are most frequently used drugs in the prevention of coronary artery disease due to their cholesterol- lowering activity. However, it is not exactly known whether these effects of statins or those independent of cholesterol decrease account for the protection ag ainst myocardial ischemia- reperfusion (I/R) injury. In this study, we investigated the effect of 5-day treatment with simvastatin (10 mg/kg) in Langendorff- perfused hearts of healthy control (C) and diabetic- hypercholesterolemic (D-H; strept ozotocin + high fat-cholesterol diet, 5 days) rats subjected to 30-min global ischemia followed by 40-min reperfusion for the examination of postischemic contractile dysfunction and reperfusion-induced ventricular arrhythmias or to 30-min (left anterior descending) coronary artery occlusion and 2-h reperfusion for the infarct size determination (IS; tetrazolium stai ning). Postischemic recovery of left ventricular developed pressu re (LVDP) in animals with D-H was improved by simvastatin therapy (62.7±18.2 % of preischemic values vs. 30.3±5.7 % in the untreated D-H; P<0.05), similar to the values in the simvastatin-treated C group, which were 2.5-fold higher than those in the untreated C group. No ventricular fibrillation occurred in the simvastatin-treated C and D-H animals during reperf usion. Likewise, simvastatin shortened the duration of ventri cular tachycardia (10.2±8.1 s and 57.8±29.3 s in C and D-H vs. 143.6±28.6 s and 159.3±44.3 s in untreated C and D-H, respectively, both P<0.05). The decreased arrhythmogenesis in the simvastatin-treated groups correlated with the limitation of IS (in % of risk area) by 66 % and 62 % in C and D-H groups, respectively. However, simvastatin treatment decreased plasma cholesterol levels neither in the D-H animals nor in C., a2_The results indicate that other effects of statins (independent of cholesterol lowering) are involved in the improvement of contractile recovery and attenuation of lethal I/R injury in both, healthy and diseased individuals., A. Adameová, A. Harčárová, J. Matejíková, D. Pancza, M. Kuželová, S. Čarnická, P. Švec, M. Barteková, J. Styk, T. Ravingerová., and Obsahuje bibliografii
Inhalational anesthetic-induced preconditioning (APC) has been shown to reduce infarct size and attenuate contractile dysfunction caused by myocardial ischemia. Only a few studies have reported the effects of APC on arrhythmias during myocardial ischemia-reperfusion injury, focusing exclusively on reperfusion. Accordingly, the ai m of the present study was to examine the influence of APC on ventricular arrhythmias evoked by regional no-flow ischemia. APC was induced in adult male Wistar rats by 12-min exposures to two different concentrations (0.5 and 1.0 MAC) of isoflurane followed by 30-min wash-out periods. Ventricular arrhythmias were assessed in the isolated perfused hearts during a 45- min regional ischemia and a subsequent 15-min reperfusion. Myocardial infarct size was determined after an additional 45 min of reperfusion. The incidence, severity and duration of ventricular arrhythmias during ischemia were markedly reduced by APC. The higher concentration of isoflurane had a larger effect on the incidence of ventricular fibrillation than the lower concentration. The incidence of ventricular tachycardia and reversible ventricular fibrillation during reperfusion was also significantly reduced by APC; the same was true for myocardial infarct size. In conclusion, we have shown that preconditioning with isoflurane confers profound protection against myocardial is chemia- and reperfusion-induced arrhythmias and lethal myocardial injury., H. Říha ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Contrary to clinical trials, experimental studies revealed that diabetes mellitus (DM) may initiate, besides increased myocardial vulnerability to ischemia-reperfusion injury (I/R) and pro/antioxidant dysbalance, development of adaptation leading to an enhanced tolerance to I/R. The aims were to characterize 1) susceptibility to ischemia-induced ventricular arrhythmias in the diabetic rat heart 2) its response to antioxidant N-acetylcysteine (NAC ) and a NOS inhibitor L-NAME, and 3) the effect of DM on endogenous antioxidant systems. Seven days after streptozotocin injection (65 mg/kg, i.p.), Langendorff-perfused control (C) and DM hearts were subjected to 30-min occlusion of the LAD coronary artery with or without prior 15-min treatment with L-NAME (100 μM) or NAC (4 mM). Total number of ventricular premature beats (VPB), as well the total duration of ventricular tachycardia (VT) were reduced in the DM group (from 533±58 and 37.9±10.2 s to 224.3±52.6 and 19±13.5 s; P<0.05). In contrast to the antiarrhythmic effects of L-NAME and NAC in controls group (VPB 290±56 and 74±36, respectively; P<0.01 vs. control hearts), application of both drugs in the diabetics did not modify arrhythmogenesis (L-NAME: VPB 345±136, VT 25±13 s; NAC: VPB 207±50, VT 12±3.9 s; P>0.05 vs non-treated diabetic hearts). Diabetic state was associated with significantly elevated levels of CoQ 10 and CoQ 9 (19.6±0.8 and 217.3±9.5 vs. 17.4± 0. 5 and 185.0±5.0 nmol/g, respectively, in controls; P<0.05), as well as α-tocopherol (38.6±0.7 vs. 31.5±2.1 nmol/g in controls; P<0.01) in the myocardial tissue. It is concluded that early period of DM is associated with enhanced resistance to ischemia-induced arrhythmias. Diabetes mellitus might induce adaptive processes in the myocardium leading to lower susceptibility to antioxidant and L-NAME treatment., J. Matejíková, J. Kucharská, D. Pancza, T. Ravingerová., and Obsahuje bibliografii a bibliografické odkazy
The increase of radical forms of mitochondrial respiratory chain compounds (MRCC) is an indicator of an increased risk of the formation of oxygen radicals. Using electron paramagnetic resonance (EPR), we found an increase of signals corresponding to ubisemichinone radical (·QH) and ironsulfur proteins radical forms (·FeS) of these respiratory chain compounds during ischemia in the isolated perfused rat heart (·QH increased from 1.51 to 3.08, ·FeS1 from 1.14 to 2.65 arbitrary units). During the 5-min reperfusion, the signals returned to normoxic levels. In isolated mitochondria exposed to anoxia and reoxygenation the radical forms of ·QH and ·FeS2 changed in a similar manner as in the intact heart. A combination of in vivo captopril treatment and in vitro L-arginine administration significantly decreased the levels of MRCC radicals in the isolated myocardium (·QH from 2.61 to 1.72 and ·FeS1 from 1.82 to 0.46 under normoxia; ·QH from 4.35 to 2.66 and ·FeS1 from 1.93 to 1.35 during ischemia). This decrease in MRCC radical forms was associated with increased NO levels in the perfusate, determined as NO2-/ NO3-, as well as tissue NO levels determined using EPR as the dinitrosyl iron complex (DNIC). These results provide new information about the cardioprotective effects of ACE inhibitors and L-arginine., H. Vavřínková, M. Tutterová, P. Stopka, J. Divišová, L. Kazdová, Z. Drahota., and Obsahuje bibliografii
Cytochrome oxidase activity from the retina can be enhanced or depressed by free radical-mediated reactions both in positive and negative aspect. The greatest effect was exerted by ischemia/reperfusion, which significantly increased the fluorescent products of lipid peroxidation (358 %, P<0.01) and inhibited the enzyme activity (14 %, P<0.001). After hyperoxia the fluorescent products slightly increased (192 %, P< 0.05) as well as the enzyme activity (133 %, P<0.05). Hypoxia had no effect on any of these parameters. Specific changes in the composition of fluorophores after ischemia/reperfusion were revealed in the fluorescence spectra. The fact that increased lipid peroxidation after hyperoxia and after ischemia/reperfusion does not produce the same effect upon cytochrome oxidase activity might be explained by changes in the kinetic behavior of cytochrome oxidase. In the control enzyme preparation, two binding sites for cytochrome c were observed. One was of the low-affinity (Km=60 mM) and the other of the high-affinity (Km=1.12 mM). After in vitro-initiated lipid peroxidation, the low-affinity binding site was lost and the activity measured under "optimum" conditions at a single cytochrome concentration was higher than in the controls. This implies that oxidative damage to cytochrome oxidase in vivo can be site-specific and its extent should be estimated by performing detailed kinetic analysis as otherwise the results might be misleading., A. Šišková, J. Wilhelm., and Obsahuje bibliografii
Three-dimensional electrogram was used for analysis of ischemia manifestation in isolated hearts. Three parameters based on spherical coordination system were used in this study - amplitude of electrical heart vector, its azimuth and elevation. The parameters were presented as a trend. This approach reflected ischemic changes in a manner which can be easily observed and evaluated. Ischemia was analysed in seven isolated hearts of New Zealand white rabbits. It was found that (a) ischemia changes heart electric vector, (b) ischemic preconditioning has a protective effect, and (c) both of these findings can be clearly observed by the proposed method., O. Janoušek ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Hypertrophied hearts are known for increased risk of arrhythmias and are linked with reduced ischemic tolerance. However, still little is known about state characterized only by increased left ventricle (LV) mass fraction. Seventeen isolated rabbit hearts with various LV mass were divided into two groups according to LV weight/heart weight ratio (LVW/HW ratio), namely group H and L (with higher and lower LVW/HW ratio, respectively) and underwent three short cycles of global ischemia and reperfusion. The differences in electrogram (heart rate, QRSmax, mean number, onset and dominant form of ventricular premature beats) and in biochemical markers of myocardial injury (creatine kinase, lactate dehydrogenase - LDH) and lipid peroxidation (4-hydroxy-2-nonenal - 4-HNE) were studied. As compared to group L, hearts in group H exhibited lower tolerance to ischemia expressed as higher incidence and severity of arrhythmias in the first ischemic period as well as increase of LDH and 4-HNE after the first reperfusion. In the third cycle of ischemia-reperfusion, the preconditioning effect was observed in both electrophysiological parameters and LDH release in group H. Our results showed consistent trends when comparing changes in electrograms and biochemical markers. Moreover, 4-HNE seems to be good potential parameter of moderate membrane alteration following ischemia-reperfusion injury., M. Hlaváčová, V. Olejníčková, M. Ronzhina, T. Stračina, O. Janoušek, M. Nováková, P. Babula, J. Kolářová, I. Provazník, H. Paulová., and Obsahuje bibliografii