AMP -activated protein kinase (AMPK) plays a role in metabolic regulation under stress conditions, and inadequate AMPK signaling may be also involved in aging process. The aim was to find out whether AMPK α 2-subunit deletion affects heart function and ische mic tolerance of adult and aged mice. AMPK α 2 -/- (KO) and wild type (WT) female mice were compared at the age of 6 and 18 months. KO mice exhibited subtle myocardial AMPK α 2-subunit protein level, but no difference in AMPK α 1-subunit was detected between the strains. Both α 1- and α 2-subunits of AMPK and their phosphorylation decreased with advanced age. Left ventricular fractional shortening was lower in KO than in WT mice of both age groups and this difference was maintained after high-fat feeding. Infarct size induced by global ischemia/reperfusion of isolated hearts was similar in both strains at 6 months of age. Aged WT but not KO mice exhibited improved ischemic tolerance compared with the younger group. High-fat feeding for 6 months during aging abolished the infarct size-reduction in WT without affecting KO animals; nevertheless, the extent of injury remained larger in KO mice. The results demonstrate that adverse effects of AMPK α 2-subunit deletion and high-fat feeding on heart function and myocardia l ischemic tolerance in aged female mice are not additive., K. Slámová, F. Papoušek, P. Janovská, J. Kopecký, F. Kolář., and Obsahuje bibliografii
We compared the effects of adaptation to intermittent high altitude (IHA) hypoxia of various degree and duration on ischemia-induced ventricular arrhythmias in rats. The animals were exposed to either relatively moderate hypoxia of 5000 m (4 or 8 h/day, 2-3 or 5-6 weeks) or severe hypoxia of 7000 m (8 h/day, 5-6 weeks). Ventricular arrhythmias induced by coronary artery occlusion were assessed in isolated buffer-perfused hearts or open-chest animals. In the isolated hearts, both antiarrhythmic and proarrhythmic effects were demonstrated depending on the degree and duration of hypoxic exposure. Whereas the adaptation to 5000 m for 4 h/day decreased the total number of premature ventricular complexes (PVCs), extending the daily exposure to 8 h and/or increasing the altitude to 7000 m led to opposite effects. On the contrary, the open-chest rats adapted to IHA hypoxia exhibited an increased tolerance to arrhythmias that was even more pronounced at the higher altitude. The distribution of PVCs over the ischemic period was not altered by any protocol of adaptation. It may be concluded that adaptation to IHA hypoxia is associated with enhanced tolerance of the rat heart to ischemic arrhythmias unless its severity exceeds a certain upper limit. The opposite effects of moderate and severe hypoxia on the isolated hearts cannot be explained by differences in the occluded zone size, heart rate or degree of myocardial fibrosis. The proarrhythmic effect of severe hypoxia may be related to a moderate left ventricular hypertrophy (27 %), which was present in rats adapted to 7000 m but not in those adapted to 5000 m. This adverse effect can be overcome by an unknown protective mechanism(s) that is absent in the isolated hearts., G. Asemu, J. Neckář, O. Szárszoi, F. Papoušek, B. Ošťádal, F. Kolář., and Obsahuje bibliografii
Transthoracic echocardiography (TTE) has become an important modality for the assessment of cardiac structure and function in animal experiments. The acquisition of echocardiographic images in rats requires sedation/anesthesia to keep the rats immobile. Commonly used anesthetic regimens include intraperitoneal or inhalational application of various anesthetics. Several studies have compared the effects of anesthetic agents on echocardiographic parameters in rats; however, none of them examined the effects of different concentrations of inhalational anesthetics on echocardiographic parameters. Accordingly, the aim of this study was to examine the effects of different concentrations of isoflurane used for anesthesia during TTE examination in rats on basic echocardiographic parameters of left ventricular (LV) anatomy and systolic function. TTE examinations were performed in adult male Wistar rats (n=10) anesthetized with isoflurane at concentrations of 1.5-3 %. Standard echocardiograms were recorded for off-line analysis. An absence of changes in basic echocardiographic parameters of LV anatomy and systolic function was found under isoflurane anesthesia using concentrations between 1.5-2.5 %. An isoflurane concentration of 3 % caused a small, but statistically significant, increase in LV chamber dimensions without a concomitant change in heart rate or fractional shortening. For the purpose of TTE examination in the rat, our results suggest that isoflurane concentrations ≤ 2.5 % can be safely recommended., H. Říha ... [et al.]., and Obsahuje seznam literatury
Inhalational anesthetic-induced preconditioning (APC) has been shown to reduce infarct size and attenuate contractile dysfunction caused by myocardial ischemia. Only a few studies have reported the effects of APC on arrhythmias during myocardial ischemia-reperfusion injury, focusing exclusively on reperfusion. Accordingly, the ai m of the present study was to examine the influence of APC on ventricular arrhythmias evoked by regional no-flow ischemia. APC was induced in adult male Wistar rats by 12-min exposures to two different concentrations (0.5 and 1.0 MAC) of isoflurane followed by 30-min wash-out periods. Ventricular arrhythmias were assessed in the isolated perfused hearts during a 45- min regional ischemia and a subsequent 15-min reperfusion. Myocardial infarct size was determined after an additional 45 min of reperfusion. The incidence, severity and duration of ventricular arrhythmias during ischemia were markedly reduced by APC. The higher concentration of isoflurane had a larger effect on the incidence of ventricular fibrillation than the lower concentration. The incidence of ventricular tachycardia and reversible ventricular fibrillation during reperfusion was also significantly reduced by APC; the same was true for myocardial infarct size. In conclusion, we have shown that preconditioning with isoflurane confers profound protection against myocardial is chemia- and reperfusion-induced arrhythmias and lethal myocardial injury., H. Říha ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy