Associative memory (AM) is a very important part of the theory of neural networks. Although the Hebbian learning rule is always used to model the associative memory, it easily leads to spurious state because of the linear outer product method. In this work, nonlinear function constitution and dynamic synapses, against a spurious state for associative memory neural network are proposed. The model of the dynamic connection weight and the updating scheme of the states of neurons are presented. Nonlinear function constitution improves the conventional Hebbian learning rule to be a nonlinear outer product method. The simulation results show that both nonlinear function constitution and dynamic synapses can effectively enlarge the attractive basin. Comparing to the existing memory models, associative memory of neural network with nonlinear function constitution can both enlarge the attractive basin and increase the storage capacity. Owing to dynamic synapses, the attractive basin of the stored patterns is further enlarged, at the same time the attractive basin of the spurious state is diminished. But the storage capacity is decreased by using the dynamic synapses.
Primulina tabacum Hance is an endangered perennial herb distributed in calcium-rich and nitrogen-limited soil of the karst limestone areas in southern China. The morphological, ultrastructural, and physiological traits were determined for P. tabacum populations growing in three different environment conditions: twilight zone of a cave (site TZ, extremely low light intensity), at a cave entrance (site EZ, low light intensity), and in an open area (site OA, high light intensity). At site OA, P. tabacum plants were exposed to high light (635 μmol m-2 s-1 of mean daily photosynthetically active radiation) with drought stress, and expressed traits to minimize light capture and water loss. Compared to plants at sites EZ and TZ, those at site OA had thicker leaves with higher densities of stomata and pubescence, higher palisade/spongy ratio, higher light-saturated rate of net photosynthetic rate (Pmax), higher biomass, higher non-photochemical quenching coefficient (NPQ), and higher light saturation point (LSP) but fewer grana per chloroplast and less thylakoid stacking per granum. In contrast, P. tabacum growing at the cave vicinities: EZ (mean daily irradiance 59 μmol m-2 s-1) and TZ (mean daily irradiance 11 μmol m-2 s-1) showed typical shade-adapted characteristics for optimum light capture. The presence of sun- and shade-adapted characteristics indicates that P. tabacum has different strategies to cope with different environments but whether these strategies reflect genetic selection or phenological plasticity is yet to be determined. Such variability in physiological and morphological traits is important for the survival of P. tabacum in heterogeneous light conditions. and K. M. Liang ... [et al.].
The rare and endangered plant, Begonia fimbristipula, shows red and green phenotypes, differentiated by a coloration of the abaxial leaf surface. In this study, we compared morphological and physiological traits of both phenotypes. The results showed that the red phenotype contained a significantly higher chlorophyll content, closer arrangement of chloroplasts, and a more developed grana. In addition, the red phenotype transferred significantly more light energy into the electron transport during the photoreaction. Similarly, the maximum photosynthetic rate, instantaneous water-use and light-use efficiencies of the red B. fimbristipula were all significantly higher than those of the green individuals. The differentiation between these two phenotypes could be caused by their different survival strategies under the same conditions; epigenetic variations may be in some correlation with this kind of phenotype plasticity. Red B. fimbristipula has an advantage in resource acquisition and utilization and possesses a better self-protection mechanism against changes in environmental conditions, therefore, it might adapt better to global climate change compared to the green phenotype. Further studies on the possible epigenetic regulation of those phenotypic differentiations are needed., Y. Wang, L. Shao, J. Wang, H. Ren, H. Liu, Q. M. Zhang, Q. F. Guo, X. W. Chen., and Seznam literatury
In order to use rationally switchgrass (Panicum virgatum L.) introduced in a large scale in semiarid regions on the Loess Plateau of China, we investigated and compared soil water storage dynamics, diurnal and seasonal changes in leaf photosynthetic characteristics, and biomass production of switchgrass grown under three different row spacing (20, 40, and 60 cm). Results indicated that photosynthetic parameters showed a pronounced seasonality. Diurnal course of net photosynthetic rate (P N) was bimodal, showing obvious midday depression, which was mainly due to stomatal limitation in May and June, by nonstomatal limitation in August, and both stomatal and nonstomatal factors in September. Generally, P N, stomatal conductance, instantaneous water-use efficiency, light-saturated net photosynthetic rate, saturation irradiance, and compensation irradiance increased with increasing row spacing. Plant height, leaf width, and a relative growth rate of biomass accumulation were significantly higher at the row spacing of 60 cm, while 20 cm spacing showed significantly higher aboveground biomass production and the biomass water-use efficiency. All these confirmed that soil water is the key limiting factor influencing switchgrass photosynthesis, and suggested that the wide row plantation (i.e., 60 cm) was more beneficial to switchgrass growth, while narrow spacing was in favor of improving switchgrass productivity and water-use efficiency., Z. J. Gao, B. C. Xu, J. Wang, L. J. Huo, S. Li., and Obsahuje seznam literatury
We have studied the role of external current stimuli in a four-dimensional Hodgkin-Huxley-type model of cold receptor in this paper. Firstly, we researched its firing patterns from direct current (DC) and alternating current (AC) stimuli. Under different values of DC stimulus intensity, interspike intervals (ISIs) with period-doubling bifurcation phenomena appeared. Second, research has shown that neurons are extremely sensitive to changes in the frequency and amplitude of the current used to stimulate them. As the stimulus frequency increased, discharge rhythms emerged ranging from burst firing to chaotic firing and spiking firing. Meanwhile, various phase-locking patterns have been studied in this paper, such as p : 1 (p > 1), 1 : q (q > 1), 2 : q (q > 1) and p : q (p; q > 1), etc. Finally, based on the fast-slow dynamics analysis, codimension-two bifurcation analysis of the fast subsystem was performed in the parameter (asr;B)-plane. We mainly investigated cusp bifurcation, fold-Hopf bifurcation, Bogdanov-Takens bifurcation and generalized Hopf bifurcation. These results revealed the effect of external current stimuli on the neuronal discharge rhythm and were instructive for further understanding the dynamical properties and mechanisms of the Huber-Braun model.
The spontaneously hypertensive rat (SHR is the most widely used animal model of essential hypertensio and left ventricular hypertrophy. Catecholamines play an important role in the pathogenesis of both essential hypertension in humans and in the SHR. Recently, we obtained evidence that the SHR harbors a variant in the gene for dopamine beta hydroxylase (Dbh) that is associated with reduced adrenal expression of Dbh mRNA and reduced DBH enzymatic activity which correlated negatively with blood pressure. In the current study, we used a transgenic experiment to test the hypothesis that reduced
Dbh expression predisposes the SHR to hypertension and that augmentation of Dbh expression would reduce blood pressure. We derived 2 new transgenic SHR-Dbh lines expressing Dbh cDNA under control of
the Brown Norway (BN) wild type promoter. We found modestly increased adrenal expression of Dbh in transgenic rats versus SHR non
-transgenic controls that was associated with reduced adrenal levels of dopamine and increased plasma levels of norepinephrine and epinep
hrine. The observed changes in catecholamine metabolism were associated with increased blood pressure and left ventricular mass in both transgenic lines. We did not observe any consistent changes in brainstem levels of catecholamines or of mRNA levels of Dbh in the transgenic strains. Contrary to our initial expections, these findings are
consistent with the possibility that genetically determined decreases in adrenal expression and activity of DBH do not represent primary determinants of increased blood pressure in the SHR model.
Growth and physiological responses of cotton (Gossypium hirsutum L.) cultivars with different phosphorus (P) efficiencies under variable P environment are poorly known. Therefore, this study explored effects of normal P [P+, 70 kg(P2O5) ha-1] and without P (P-, 0 kg ha-1) on yield, growth, and physiology of different P-efficient cultivars [low-efficient Xinluzao 13 (L1) and Xinluzao 26 (L2); medium-efficient Xinluzao 10 (M1) and Xinluzao 24 (M2);
high-efficient Zhongmiansuo 42 (H1) and Xinluzao19 (H2)]. Cotton growth and yield was higher in H1 and H2 cultivars under P+ compare to P-. Leaf photosynthesis, intercellular CO2 concentration, stomatal conductance, and net assimilation rate increased under P+ and in high-efficient cultivars. Greater Rubisco activity and higher soluble sugar content further promoted P uptake and utilization efficiency which resulted in a higher yield under normal P+ than that at P- treatment. High-P-efficient cultivars have the potential to increase the yield by improving cotton growth and physiological attributes under P+., J. Wang, Y. Chen, P. Wang, Y. S. Li, G. Wang, P. Liu, A. Khan., and Obsahuje bibliografii
When we apply ecological models in environmental management, we must assess the accuracy of parameter estimation and its impact on model predictions. Parameters estimated by conventional techniques tend to be nonrobust and require excessive computational resources. However, optimization algorithms are highly robust and generally exhibit convergence of parameter estimation by inversion with nonlinear models. They can simultaneously generate a large number of parameter estimates using an entire data set. In this study, we tested four inversion algorithms (simulated annealing, shuffled complex evolution, particle swarm optimization, and the genetic algorithm) to optimize parameters in photosynthetic models depending on different temperatures. We investigated if parameter boundary values and control variables influenced the accuracy and efficiency of the various algorithms and models. We obtained optimal solutions with all of the inversion algorithms tested if the parameter bounds and control variables were constrained properly. However, the efficiency of processing time use varied with the control variables obtained. In addition, we investigated if temperature dependence formalization impacted optimally the parameter estimation process. We found that the model with a peaked temperature response provided the best fit to the data., H. B. Wang, M. G. Ma, Y. M. Xie, X. F. Wang, J. Wang., and Obsahuje bibliografii
Nicosulfuron is a post-emergence herbicide used for weed control in fields of maize (Zea mays L.). We used a pair of nearly isogenic inbred lines, SN509-R (nicosulfuron-resistant) and SN509-S (nicosulfuron-sensitive), to study the effect of nicosulfuron on waxy maize seedling. After the nicosulfuron treatment, net photosynthetic rate, stomatal conductance, transpiration rate, leaf maximum photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and the actual photochemical efficiency of PSII were significantly lower in SN509-S than those of SN509-R, contrary to intercellular CO2 concentration, stomatal limitation, and nonphotochemical quenching. Compared to SN509-R, antioxidant enzyme activities in SN509-S decreased significantly in response to the nicosulfuron treatment, while SN509-S exhibited an increased malondialdehyde content, which was associated with lower antioxidant enzyme activities. These results collectively suggest that the nicosulfuron-resistance mechanism was associated with photosynthetic rate, reactive oxygen species metabolism, and protective mechanisms., J. Wang, X. M. Zhong, X. L. Lv, Z. S. Shi, F. H. Li., and Obsahuje bibliografii
This study compared the relationship between chlorophyll (Chl) content, gas exchange, Chl fluorescence characteristics, and leaf color, using paired near-isogenic lines (NILs) of a medium-green leaf inbred line SN12 and a yellow-green leaf mutant SN62 to explore the photosynthesis of the yellow-green mutant. The SN62 was found in a female parent, Xianyu 335, which grew normally, although there were small yellow spots on the leaves at the seedling stage and yellow-green leaves appeared from the seedling to the maturation stage. The results indicated that Chl a (b), quantum efficiency of PSII, and maximal quantum yield of PSII photochemistry of SN62 were significantly lower than those of SN12, but there were almost no differences in the net photosynthetic rate (P N). There was no significant correlation between Chl a (b) and P N of inbred lines with different leaf colors. In the reproductive stage, photochemical quenching, effective quantum yield of PSII photochemistry, and the electron transport rate of SN62 increased obviously, and all parameter values exceeded the values of SN12. It explained that increasing the openness of the PSII reaction center was able to compensate for the lower Chl content, which was beneficial for harvesting more light energy for photochemical reactions. It also ensured that P N was not reduced., X. M. Zhong, S. F. Sun, F. H. Li, J. Wang, Z. S. Shi., and Obsahuje seznam literatury