The aim of the study was to evaluate the impact of simulated acute hyperglycemia (HG) on PI3K/Akt signaling in preconditioned and non -preconditioned isolated rat hearts perfused with Krebs -Henseleit solution containing normal (11 mmol/l) or elevated (22 mmol/l) glucose subjected to ischemia -reperfusion. Ischemic preconditioning (IP) was induced by two 5 -min cycle s of coronary occlusion followed by 5 -min reperfusion. Protein levels of Akt, phosphorylated (activated) Akt (P-Akt), as well as contents of BAX protein were assayed (Western blotting) in cytosolic fraction of myocardial tissue samples taken prior to and a fter 30 -min global ischemia and 40- min reperfusion. In “normoglycemic ” conditions (NG), IP significantly increased P -Akt at the end of long -term ischemia, while reperfusion led to its decrease together with the decline of BAX levels as compared to non- pre conditioned hearts. On the contrary, under HG conditions, P -Akt tended to decline in IP - hearts after long -term ischemia, and it was significantly higher after reperfusion than in non -preconditioned controls . No significant influence of IP on BAX levels at the end of I/R was observed under HG conditions . It seems that high glucose may influence IP -induced activation of Akt and its downstream targets, as well as maintain persistent Akt activity that may be detrimental for the heart under above conditions., M. Zálešák, P. Blažíček, I. Gablovský, V. Ledvényiová, M. Barteková, A. Ziegelhöffer, T. Ravingerová., and Obsahuje bibliografii
The aim of our study was to characterize resistance to ischemia/reperfusion (I/R) injury in Langendorff-perfused rat hearts and effectivity of ischemic preconditioning (PC) under condition of simulated acute hyperglycemia (SAHG) by perfusion of the hearts with Krebs-Henseleit (KH) solution with elevated glucose concentration (22 mmol/l). I/R injury was induced by 30- min coronary occlusion followed by 120-min reperfusion and PC by two cycles of 5-min occlusion/5-min reperfusion, prior to I/R. The severity of I/R injury was characterized by determination of the size of infarction (IS, expressed in % of area at risk size) and the amount of heart-type fatty acid binding protein (h-FABP, a marker of cell injury) released from the hearts to the effluent. Significantly smaller IS (8.8±1 %) and lower total amount of released h-FABP (1808±660 pmol) in PC group compared with IS 17.1±1.2 % (p<0.01) and amount of h-FABP (8803±2415 pmol, p<0.05) in the non-PC control hearts perfused with standard KH solution (glucose 11 mmol/l) confirmed protective effects of PC. In contrast, in SAHG groups, PC enhanced IS (21.4±2.2 vs. 14.3±1.3 %, p<0.05) and increased total amount of h-FABP (5541±229 vs. 3458±283 pmol, p<0.05) compared with respective non-PC controls. Results suggest that PC has negative effect on resistance of the hearts to I/R injury under conditions of elevated glucose in vitro., M. Zálešák, P. Blažíček, D. Pancza, V. Ledvényiová, M. Barteková, M. Nemčeková, S. Čarnická, A. Ziegelhöffer, T. Ravingerová., and Obsahuje bibliografii