We investigated the influence of oxygenation of in vitro lung preparation on the pulmonary vascular reactivity. Small pulmonary vessels isolated from adult male Wistar rats exposed for 4 days to hypoxia (FiO2 = 0.1, group CH) were compared with those of normoxic controls (group N). The bath in the chamber of small vessel myograph was saturated with gas mixture containing either 21 % or 95 % of O2 with 5 % CO2 and we measured the reactions of vessels to acute hypoxic challenge with 0 % O2 or to PGF2α. We did not observe any difference of the contractile responses between both groups when the normoxic conditions were set in the bath. When the bath oxygenation was increased to 95 % O2, the contractions induced by hypoxic challenge and PGF2α decreased in chronically hypoxic rats and did not change in normoxic controls. We hypothesize that reduced reactivity of vessels from hypoxic rats in hyperoxia results from the effect of chronic hypoxia on Ca2+ signaling in the vascular smooth muscle, which is modulated by increased free radical production during the exposure to chronic hypoxia and further hyperoxia., M. Žaloudíková, M. Vízek, J. Herget., and Obsahuje seznam literatury
Experimental pneumonia induced by intratracheal application of carrageenan or paraquat increases the functional residual lung capacity (FRC) in rats. The mechanism of this increase is not clear, but a decrease in PO2 may be involved. To test this possibility, we attempted to eliminate the PO2 decrease in carrageenan-treated rats by exposing them to hyperoxia. Animals of the first group were exposed to 7 days of hyperoxia (FIO2 0.78-0.84, group Car+O2) after intratracheal application of carrageenan (0.5 ml of 0.7 % carageenan in saline), whereas animals of the second group were given the same dose of carrageenan but breathed air (group Car+A). The third group of rats was kept for seven days in hyperoxia (group O2) and the fourth group served as controls (C). The animals were then anesthetized and intubated and their ventilatory parameters and FRC were measured during air breathing. Carrageenan application induced a FRC increase (Car+A 2.0±0.2 ml, C 1.6±0.1 ml), which was not seen in carrageenan-treated rats exposed to hyperoxia (Car+O2 1.6±0.1 ml). Hyperoxia alone did not affect the value of FRC (O2 1.5±0.1 ml). These results support the hypothesis that a decrease in PO2 plays an important role in the carrageenan-induced increase of FRC in rats., B. Fišárková, M. Vízek., and Obsahuje bibliografii
Oxygen supply was corrected in rabbits during the hepatic ischemia/reperfusion by means of different breathing mixtures: hypoxic (14.8 % O2+85.2 % N2), hyperoxic (78 % O2+20.2 % N2+ 1.8 % CO2), or hypercapnic (5 % CO2 in air). Hepatic ischemia was induced for 30 min by ligation of hepatic artery, reperfusion period lasted 120 min. Indices of blood oxygen transport (p50act, pCO2, pH, pO2, etc.) and prooxidant-antioxidant balance (Schiff bases, conjugated dienes, catalase, retinol, a-tocopherol) were measured in the blood and liver. The severity of reperfusion damage was evaluated by the activities of alanine and aspartate aminotransferases (ALT, AST) in the blood. Hepatic ischemia/reperfusion resulted in higher p50act in hepatic venous and mixed venous blood in all experimental groups. The changes of p50act were most marked in the hypercapnic group and were the weakest in the hypoxic group. The rise in p50act was accompanied by higher levels of lipid peroxidation products, ALT and AST in blood and liver homogenates, and by a simultaneous fall of α-tocopherol and retinol concentrations, except in the hypoxic group. Catalase activity at the end of reperfusion increased under normoxia, decreased under hyperoxia or hypercapnia and did not change under hypoxia. The moderate hypoxia during reperfusion was accompanied by a better balance between the mechanisms of reactive oxygen species production and inactivation that may be observed by optimal changes in p50act and reduced the hepatic damage in this pathological condition., V. V. Zinchuk, M. N. Khodosovsky, D. A. Maslakov., and Obsahuje bibliografii
Neonatal exposure to hyperoxia alters lung development in mice. We tested if retinoic acid (RA) treatment is capable to affect lung development after hyperoxic injury and to maintain structural integrity of lung. The gene of vascular endothelial growth factor A (VEGF-A) is one of the RA-responsive genes. Newborn BALB/c mice were exposed to room air, 40 % or 80 % hyperoxia for 7 days. One half of animals in each group received 500 mg/kg retinoic acid from day 3 to day 7 of the experiment. At the end of experiment we assessed body weight (BW), lung wet weight (LW), the wet-to-dry lung weight ratio (W/D) and the expression of mRNA for VEGF-A and G3PDH genes. On day 7 the hyperoxia-exposed sham-treated mice (group 80) weighed 20 % less than the room air-exposed group, whereas the 80 % hyperoxic group treated with RA weighed only 13 % less than the normoxic group. W/D values in 80 and 80A groups did not differ, although they both differed from the control group and from 40 groups. There was a significant difference between 40 and 40A groups, but the control group was different from 40 group but not from 40A groups. The 80 and 80A groups had mRNA VEGF-A expression lowered to 64 % and 41 % of the control group. RA treatment of normoxic and mild hyperoxic groups increased mRNA VEGF-A expression by about 50 %. We conclude that the retinoic acid treatment of newborn BALB/c mice exposed for 7 days to 80 % hyperoxia reduced the growth retardation in the 80 % hyperoxic group, reduced the W/D ratio in the 40 % but not in the 80 % hyperoxic group. Higher VEGF-A mRNA expression in the 80 % hyperoxic group treated with RA was not significant compared to the 80 % hyperoxic group., M. Zimová-Herknerová, J. Mysliveček, P. Potměšil., and Obsahuje bibliografii a bibliografické odkazy
Cytochrome oxidase activity from the retina can be enhanced or depressed by free radical-mediated reactions both in positive and negative aspect. The greatest effect was exerted by ischemia/reperfusion, which significantly increased the fluorescent products of lipid peroxidation (358 %, P<0.01) and inhibited the enzyme activity (14 %, P<0.001). After hyperoxia the fluorescent products slightly increased (192 %, P< 0.05) as well as the enzyme activity (133 %, P<0.05). Hypoxia had no effect on any of these parameters. Specific changes in the composition of fluorophores after ischemia/reperfusion were revealed in the fluorescence spectra. The fact that increased lipid peroxidation after hyperoxia and after ischemia/reperfusion does not produce the same effect upon cytochrome oxidase activity might be explained by changes in the kinetic behavior of cytochrome oxidase. In the control enzyme preparation, two binding sites for cytochrome c were observed. One was of the low-affinity (Km=60 mM) and the other of the high-affinity (Km=1.12 mM). After in vitro-initiated lipid peroxidation, the low-affinity binding site was lost and the activity measured under "optimum" conditions at a single cytochrome concentration was higher than in the controls. This implies that oxidative damage to cytochrome oxidase in vivo can be site-specific and its extent should be estimated by performing detailed kinetic analysis as otherwise the results might be misleading., A. Šišková, J. Wilhelm., and Obsahuje bibliografii