We investigated the effects of in vivo treatment with the angiotensin-converting enzyme inhibitor (ACE-I) captopril and/or of in vitro administration of L-arginine on the metabolism and ischemia-reperfusion injury of the isolated perfused rat myocardium. Captopril (50 mg/l in drinking water, 4 weeks) raised the myocardial content of glycogen. After 25-min global ischemia, captopril treatment, compared with the controls, resulted in lower rates of lactate dehydrogenase release during reperfusion (8.58±1.12 vs. 13.39±1.88 U/heart/30 min, p<0.05), lower myocardial lactate contents (11.34±0.93 vs. 21.22±4.28 µmol/g d.w., p<0.05) and higher coronary flow recovery (by 25 %), and prevented the decrease of NO release into the perfusate during reperfusion. In control hearts L-arginine added to the perfusate (1 mmol/l) 10 min before ischemia had no effect on the parameters evaluated under our experimental conditions, presumably because of sufficient saturation of the myocardium with L-arginine. In the hearts of captopril-treated rats, L-arginine further increased NO production during reperfusion and the cGMP content before ischemia. Our results have shown that long-term captopril treatment increases the energy potential and has a beneficial effect on tolerance of the isolated heart to ischemia. L-arginine added into the perfusate potentiates the effect of captopril on the NO signaling pathway., J. Divišová, H. Vavřínková, M. Tutterová, L. Kazdová, E. Meschišvili., and Obsahuje bibliografii
Angiotensin converting enzyme inhibitors are widely used in therapy of cardiovascular diseas es. However, the consensus on effects of these inhibitors in control of myocardial oxygen consumption during the process of experimental hypercholesterolemia and under the condition of endothelial dysfunction has not been reached. Here we examined effects of captopril, an angiotensin converting enzyme inhibitor, on serum lipid levels and oxygen consumption rate in mitochondria isolated from heart of rabbits treated by hypercholesterolemic diet. During the twelve-week period, th e Chinchilla male rabbits were daily treated by saline (controls); 1 % cholesterol diet; 5 mg/kg/day captopril or 1 % cholesterol + 5 mg/kg/day captopril. Total- and high-densi ty lipoprotein cholesterol and triglyceride in serum were measured spectrophotometricly. The left ventricle mitochondrial fraction was isolated and myocardial oxygen consumption was measur ed by Biological Oxygen Monitor. Mitochondria isolated from hearts of rabbits exposed to hypercholesterolemic diet sh owed significantly reduced respiration rates (state 3 and state 4) with altering adenosine diphosphate/oxygen ratio, whereas the respiratory control ratio was not affected when compared to controls. Mitochondria from cholesterol/captopril-treated animals showed significantly reduced respiration rates without altering adenosine diphosphate/oxygen ratio index or respiratory control ratio. Although captopril did not exert the favorable effect on serum lipid levels in cholesterol-treated animals, it restored the mitochondrial oxygen consumption. Further studies should be performed to define the under lying physiological and/or pathophysiological mechanisms and clinical implications., Z. Kojic ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Heart failure has become the most widely studied syndrome in cardiology over the recent years. Despite the encouraging achievements by angiotensin converting enzyme (ACE) inhibitors, the mortality of patients with chronic heart failure remains high. There are several factors which can potentially be responsible for the fact that about 80% of patients with a failing heart defy protection by ACE inhibitors: different activation of tissue and systemic renin-angiotensin system (RAS) in a particular heart disease and the distinct ability of various ACE inhibitors to block cardiac ACE, alternative pathways for angiotensin II formation (chymase), genetic polymorphism of the RAS system and the complexity of neuroendocrine activation. Moreover, chronic heart failure can provoke disturbances in the reactivity of peripheral vessels and metabolism of striated muscles. These factors may then potentiate the vicious circle of heart failure. New therapeutic approaches, which could further reduce the mortality in patients with heart failure involve angiotensin II type 1 receptor antagonists, beta-blockers, aldosterone antagonists and blockers of the endothelin receptor. A number of questions associated with functions of the RAS still remain open and their solution could be of substantial benefit for patients with a failing heart., F. Šimko, J. Šimko., and Obsahuje bibliografii
By means of a tracer assay using a labeled synthetic angiotensin converting enzyme (ACE) substrate hippurylglycylglycine, we have detected high ACE activity in the testes of the African migratory locust, Locusta migratoria. Lower, but significant, ACE activity was observed in midgut and hemolymph. In a two-step purification procedure involving anion exchange and gel permeation chromatography, we have purified LomACE from the locust testes. The enzyme of approximately 80 kDa shows substantial amino-acid sequence homology with ACE from both vertebrate and invertebrate origin. The ACE identity of the purified enzyme was further confirmed by cDNA cloning of the Locusta ACE fragment, which, after in silico translation, revealed a mature protein of 623 amino acids with a large structural similarity to other known ACE proteins.
The increase of radical forms of mitochondrial respiratory chain compounds (MRCC) is an indicator of an increased risk of the formation of oxygen radicals. Using electron paramagnetic resonance (EPR), we found an increase of signals corresponding to ubisemichinone radical (·QH) and ironsulfur proteins radical forms (·FeS) of these respiratory chain compounds during ischemia in the isolated perfused rat heart (·QH increased from 1.51 to 3.08, ·FeS1 from 1.14 to 2.65 arbitrary units). During the 5-min reperfusion, the signals returned to normoxic levels. In isolated mitochondria exposed to anoxia and reoxygenation the radical forms of ·QH and ·FeS2 changed in a similar manner as in the intact heart. A combination of in vivo captopril treatment and in vitro L-arginine administration significantly decreased the levels of MRCC radicals in the isolated myocardium (·QH from 2.61 to 1.72 and ·FeS1 from 1.82 to 0.46 under normoxia; ·QH from 4.35 to 2.66 and ·FeS1 from 1.93 to 1.35 during ischemia). This decrease in MRCC radical forms was associated with increased NO levels in the perfusate, determined as NO2-/ NO3-, as well as tissue NO levels determined using EPR as the dinitrosyl iron complex (DNIC). These results provide new information about the cardioprotective effects of ACE inhibitors and L-arginine., H. Vavřínková, M. Tutterová, P. Stopka, J. Divišová, L. Kazdová, Z. Drahota., and Obsahuje bibliografii