The aim of this study was to investigate the effects of troglitazone (TRO) - a new insulin-sensitizing agent - on some metabolic parameters in an experimental model of hypertriglyceridemia and insulin resistance, hereditary hypertriglyceridemic rats, and to compare its effects with those of vitamin E, an antioxidant agent. Three groups of the above rats were fed diets with a high content of sucrose (70 % of energy as sucrose) for four weeks. The first group was supplemented with TRO (120 mg/kg diet), the second one with vitamin E (500 mg/kg diet), and the third group served as the control. Vitamin E supplementation did not lower serum triglycerides (2.42±0.41 vs. 3.39±0.37 mmol/l, N.S.) while TRO did (1.87±0.24 vs. 3.39±0.37 mmol/l, p<0.01). Neither TRO nor vitamin E influenced the serum levels of free fatty acids (FFA). Both drugs influenced the spectrum of fatty acids in serum phospholipids - TRO increased the levels of polyunsaturated fatty acids (PUFA) n-6 (36.04±1.61 vs. 19.65±1.56 mol %, p<0.001), vitamin E increased the levels of PUFA n-3 (13.30±0.87 vs. 6.79±0.87 mol %, p<0.001) and decreased the levels of saturated fatty acids (32.97±0.58 vs. 51.45±4.01 mol %, p<0.01). In conclusion, TRO lowered the level of serum triglycerides but vitamin E did not have this effect in hypertriglyceridemic rats. Compared with TRO, vitamin E had a different effect on the spectrum of fatty acids in serum phospholipids., Š. Chvojková, L. Kazdová, J. Divišová., and Obsahuje bibliografii
Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) exert beneficial effects on health and they could help to prevent development of obesity and associated metabolic disorders. In our previous studies in mice fed high-fat (cHF; ~60 % calories as fat) diet and maintained at 20 °C, dietary LC n-3 PUFA could counteract accretion of body fat, without inducing mitochondrial uncoupling protein 1 (UCP1) in adipose tissue, suggesting that the anti-obesity effect was not linked to adaptive (UCP1- mediated) thermogenesis. To exclude a possible dependence of the anti-obesity effect on any mechanism inducible by cold, experiments were repeated in mice maintained at thermoneutrality (30 °C). Male C57BL/6J mice were fed either cHF diet, or cHF diet supplemented with LC n-3 PUFA, or standard diet for 7 months. Similarly as at 20 °C, the LC n-3 PUFA supplementation reduced accumulation of body fat, preserved lipid and glucose homeostasis, and induced fatty acid re-esterification in epididymal white adipose tissue. Food consumption was not affected by LC n-3 PUFA intake. Our results demonstrated anti-obesity metabolic effect of LC n-3 PUFA, independent of cold-induced thermogenesis and they suggested that induction of fatty acid re-esterification creating a substrate cycle in white fat, which results in energy expenditure, could contribute to the anti-obesity effect., P. Janovská, ... [et al.]., and Obsahuje seznam literatury
Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu2+ induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern., R. Večeřa, N. Škottová, P. Váňa, L. Kazdová, Z. Chmela, Z. Švagera, D. Walterová, J. Ulrichová, V. Šimánek., and Obsahuje bibliografii
Visfatin was originally described as an adipokine with insulin mimetic effects. Recently, it was found that visfatin is identical with the Nampt (nicotinamide phosphoribosyltransferase) gene that codes for an intra- and extracellular NAD biosynthetic enzyme and is predominantly expressed outside the adipose tissue. In the current study, we found strong protein and mRNA expression of visfatin in rat heart, liver, kidney, and muscle, while the expression of visfatin in visceral fat was significantly lower and undetectable in subcutaneous fat. The insulin-mimetic effects of visfatin (extracellular form of Nampt or eNampt) are controversial and even less is known about autocrine effects of visfatin (intracellular form of Nampt or iNampt). Since liver plays a major role in glucose metabolism, we studied visfatin effects on insulin-stimulated cellular glucose uptake in Fao rat hepatocytes using RNA interference (RNAi). RNAi-mediated downregulation of visfatin expression in Fao cells was associated with significantly reduced NAD biosynthesis (0.3±0.01 vs. 0.5±0.01 mmol/h/g, P<0.05) and with significantly decreased incremental glucose uptake after stimulation with insulin when compared to controls with normal expression of visfatin (0.6±0.2 vs. 2.2±0.5 nnmol/g/2 h, P=0.02). These results provide evidence that visfatin exhibits important autocrine effects on sensitivity of liver cells to insulin action possibly through its effects on NAD biosynthesis., V. Škop ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
We present data supporting the hypothesis that the lysosomalautophagy pathway is involved in the degradation of intracellular triacylglycerols in the liver. In primary hepatocytes cultivated in the absence of exogenous fatty acids (FFA), both inhibition of autophagy flux (asparagine) or lysosomal activity (chloroquine) decreased secretion of VLDL (very low density lipoproteins) and formation of FFA oxidative products while the stimulation of autophagy by rapamycine increased some of these parameters. Effect of rapamycine was completely abolished by inactivation of lysosomes. Similarly, when autophagic activity was influenced by cultivating the hepatocytes in “starving” (amino-acid poor medium) or “fed” (serum-supplemented medium) conditions, VLDL secretion and FFA oxidation mirrored the changes in autophagy being higher in starvation and lower in fed state. Autophagy inhibition as well as lysosomal inactivation depressed FFA and DAG (diacylglycerol) formation in liver slices in vitro. In vivo, intensity of lysosomal lipid degradation depends on the formation of autophagolysosomes, i.e. structures bringing the substrate for degradation and lysosomal enzymes into contact. We demonstrated that lysosomal lipase (LAL) activity in liver autophagolysosomal fraction was up-regulated in fasting and down-regulated in fed state together with the increased translocation of LAL and LAMP2 proteins from lysosomal pool to this fraction. Changes in autophagy intensity (LC3-II/LC3-I ratio) followed a similar pattern., V. Škop ... [et al.]., and Obsahuje seznam literatury
In this study, we focused on an analysis of biguanides effects on mitochondrial enzyme activities, mitochondrial membrane potential and membrane permeabili ty transition pore function. We used phenformin, which is more efficient than metformin, and evaluated its effect on rat liver mitochondria and isolated hepatocytes. In contrast to prev iously published data, we found that phenformin, after a 5 min pr e-incubation, dose-dependently inhibits not only mitochondrial complex I but also complex II and IV activity in isolated mitochondria. The enzymes complexes inhibition is paralleled by the decreased respiratory control index and mitochondrial membrane potent ial. Direct measurements of mitochondrial swelling revealed that phenformin increases the resistance of the permeability transition pore to Ca 2+ ions. Our data might be in agreement with the hypothesis of Schäfer (1976) that binding of biguanides to membrane phospholipids alters membrane properties in a non-specific manner and, subsequently, different enzyme activities are modified via lipid phase. However, our measurements of anisotropy of fluorescence of hydrophobic membrane probe diphenylhexatriene have not shown a measurable effect of membrane fluidity with the 1 mM concentration of phenformin that strongly inhibited complex I activity. Our data therefore suggest that biguanides could be considered as agents with high efficacy but low specifity., Z. Drahota ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The aim of the current study was to clarify the effect of high sucrose diet (HSD) on bile formation (BF) in rats with hereditary hypertriglyceridemia (HHTg). Potentially positive effects were studied for boldine, a natural choleretic agent. Administration of HSD to HHTg rats led to increased triglyceride deposition in the liver. HSD reduced BF as a consequence of decreased biliary secretion of bile acids (BA) and glutathione. Responsible mechanism was down-regulation of hepatic transporters for BA and glutathione, Bsep and Mrp2, respectively. Moreover, gene expressions of transporters for other constituents of bile, namely Abcg5/8 for cholesterol, Abcb4 for phospholipids, and Oatp1a4 for xenobiotics, were also reduced by HSD. Boldine partially attenuated cholestatic effect of HSD by promotion of biliary secretion of BA through up-regulation of Bsep and Ntcp, and by increase in biliary secretion of glutathione as a consequence of its increased hepatic disposition. This study demonstrates mechanisms of impaired BF during nonalcoholic fatty liver disease induced by HSD. Altered function of responsible transporters suggests also potential for changes in kinetics of drugs, which may complicate pharmacotherapy in subjects with high intake of sucrose, and with fatty liver disease. Sucrose induced alterations in BF may be alleviated by administration of boldine., M. Zagorova, A. Prasnicka, Z. Kadova, E. Dolezelova, L. Kazdova, J. Cermanova, L. Rozkydalova, M. Hroch, J. Mokry, S. Micuda., and Obsahuje bibliografii
In the current study, we tested a hypothesis that CD36 fatty acid (FA) transporter might affect insulin sensitivity by indirect effects on FA composition of adipose tissue. We examined the effects of CD36 downregulation by RNA interference in 3T3-L1 adipocytes on FA transport and composition and on sensitivity to insulin action. Transfected 3T3-L1 adipocytes, without detectable CD36 protein, showed reduced neutral lipid levels and significant differences in FA composition when levels of essential FA and their metabolites were lower or could not be detected including gamma linolenic (C18:3 n6), eicosadienic (C20:2 n6), dihomo-gamma linolenic (C20:3 n6), eicosapentaenoic (EPA) (C20:5 n3), docosapentaenoic (DPA) (C22:5 n3), and docosahexaenoic (DHA) (C22:6 n3) FA. Transfected 3T3-L1 adipocytes exhibited a significantly higher n6/n3 FA ratio, reduced Δ5-desaturase and higher Δ9-desaturase activities. These lipid profiles were associated with a significantly reduced insulin-stimulated glucose uptake (4.02±0.1 vs. 8.42±0.26 pmol.10-3 cells, P=0.001). These findings provide evidence that CD36 regulates FA composition thereby affecting sensitivity to insulin action in 3T3-L1 adipocytes., K. Kontrová, J. Zídková, B. Bartoš, V. Skop, J. Sajdok, L. Kazdová, K. Mikulík, P. Mlejnek, V. Zídek, M. Pravenec., and Obsahuje bibliografii a bibliografické odkazy
The abnormal proliferation of vascular smooth muscle cells (VSMC) is thought to play a role in the pathogenesis of atherosclerosis. Adipocytes produce several bioactive paracrine substances that can affect the growth and migration of VSMCs. Our study focuses on the direct effect of the bioactive substances in conditioned media (CM) that was obtained by incubation with primary adipocyte-derived cell lines, including cell lines derived from both preadipocytes and from more mature cells, on the proliferation rate of human aortic smooth muscle cells (HAoSMCs). We used a Luminex assay to measure the adipokine content of the CM and showed that there was a higher concentration of monocyte chemoattractant protein-1 in renal preadipocyte-CM compared with the HAoSMC control (p<0.5). The addition of both renal preadipocyte- and epicardial adipocyte-CM resulted in the elevated production of vascular endothelial growth factor compared with the control HASoSMC CM (p<0.001). The adiponectin content in renal adipocyte-CM was increased compared to all the remaining adipocyte-CM (p<0.01). Moreover, the results showed a higher proliferation rate of HAoSMCs after co-culture with epicardial adipocyte-CM compared to the HAoSMC control (p<0.05). These results suggest that bioactive substances produced by adipocytes have a stimulatory effect on the proliferation of VSMCs., J. Ždychová, S. Čejsková, I. Králová Lesná, A. Králová, J. Malušková, L. Janoušek, L. Kazdová., and Obsahuje bibliografii
We assessed the effect of the previously uncovered gap junctio n protein alpha 8 (Gja8) mutation present in spontaneously hypertensive rat - dominant cataract (SHR - Dca ) strain on blood pressure, metabolic profile, and heart and renal transcriptomes. Adult, standard chow-fed male rats of SHR and SHR - Dca strains were used. We found a significant, consistent 10-15 mmHg decrease in both systolic and diastolic blood pressures in SHR - Dca compared with SHR (P<0.01 and P<0.05 , respectively; repeated measures analysis of variance (ANOVA)). With immunohistochemistry, we were able to localize Gja8 in heart, kidney, aorta, liver, and lungs, mostly in endothelium; with no differences in expression between strains. SHR - Dca rats showed decreased body weight, high-density lipoprotein cholesterol concentrations and basa l insulin sensitivity in muscle. There were 21 transc ripts common to the sets of 303 transcripts in kidney and 487 in heart showing >1.2-fold difference in expression between SHR and SHR - Dca. Tumor necrosis factor was the most significant upstream regulato r and glial cell-derived neurotrophic factor family ligand-receptor interactions was the common enriched and downregulated canonical pathway both in heart and kidney of SHR - Dca. The connexin 50 mutation L7Q lowers blood pressure in the SHR - Dca strain, decr eases high-density lipoprotein cholesterol, and leads to substantial transcriptome changes in heart and kidney., O. Šeda, F. Liška, M. Pravenec, Z. Vernerová, L. Kazdová, D. Křenová, V. Zídek, L. Šedová, M. Krupková, V. Křen., and Obsahuje bibliografii