Increased oxidative stress is indisputably an important mechanism of doxorubicin side effects, especially its cardiotoxicity. To prevent impairment of non-tumorous tissue and to improve the specificity in targeting the tumor tissue, new drug nanotransporters are developed. In many cases preclinical therapeutic advantage has been shown when compared with the administration of conventional drug solution. Three forms of doxorubicin - conventional (DOX), encapsulated in liposomes (lipoDOX) and in apoferritin (apoDOX) were applied to Wistar rats. After 24 h exposition, the plasma level of 4-hydroxy-2- nonenal (4-HNE) as a marker of lipoperoxidation and tissue gene expression of thioredoxin reductase 2 (TXNRD2) and aldehyde dehydrogenase 3A1 (ALDH3A1) as an important part of antioxidative system were determined. Only conventional DOX significantly increases the level of 4-HNE; encapsulated forms on the other hand show significant decrease in plasma levels of 4-HNE in comparison with DOX. They also cause significant decrease in gene expression of ALDH3A1 and TXNRD2 in liver as a main detoxification organ, and a mild influence on the expression of these enzymes in left heart ventricle as a potential target of toxicity. Thus, 4-HNE seems to be a good potential biomarker of oxidative stress induced by various forms of doxorubicin., M. Hlaváčová, J. Gumulec, T. Stračina, M. Fojtů, M. Raudenská, M. Masařík, M. Nováková, H. Paulová., and Obsahuje bibliografii
Hypertrophied hearts are known for increased risk of arrhythmias and are linked with reduced ischemic tolerance. However, still little is known about state characterized only by increased left ventricle (LV) mass fraction. Seventeen isolated rabbit hearts with various LV mass were divided into two groups according to LV weight/heart weight ratio (LVW/HW ratio), namely group H and L (with higher and lower LVW/HW ratio, respectively) and underwent three short cycles of global ischemia and reperfusion. The differences in electrogram (heart rate, QRSmax, mean number, onset and dominant form of ventricular premature beats) and in biochemical markers of myocardial injury (creatine kinase, lactate dehydrogenase - LDH) and lipid peroxidation (4-hydroxy-2-nonenal - 4-HNE) were studied. As compared to group L, hearts in group H exhibited lower tolerance to ischemia expressed as higher incidence and severity of arrhythmias in the first ischemic period as well as increase of LDH and 4-HNE after the first reperfusion. In the third cycle of ischemia-reperfusion, the preconditioning effect was observed in both electrophysiological parameters and LDH release in group H. Our results showed consistent trends when comparing changes in electrograms and biochemical markers. Moreover, 4-HNE seems to be good potential parameter of moderate membrane alteration following ischemia-reperfusion injury., M. Hlaváčová, V. Olejníčková, M. Ronzhina, T. Stračina, O. Janoušek, M. Nováková, P. Babula, J. Kolářová, I. Provazník, H. Paulová., and Obsahuje bibliografii