Although both lipophilic and more hydrophilic statins share the same pathway of the inhibition of HMG-CoA reductase, their pleiotropic cardioprotective effects associated with the ability to cross cellular membranes, including membranes of heart cells, may differ. To test this hypothesis, isolated rat hearts were Langendorff-perfused either with simvastatin (S, 10 μ mol/l) or pravastatin (P, 30 μ mol/l), 15 min prior to ischemia. Control untreated hearts (C) were perfused with perfusion medium only. Postischemic contractile dysfunction, reperfusion-induced ventricular arrhythmias and infarct size were investigated after exposure of the hearts to 30- min global isch emia and 2-h reperfusion. Both lipophilic S and hydrophilic P reduced the severity of ventricular arrhythmias (arrhythmia score) from 4.3±0.2 in C to 3.0±0 and 2.7±0.2 in S and P, respectively, (both P<0.05), decreased the duration of ventricular tachycardia and suppressed ventricular fibrillation. Likewise, the extent of lethal injury (infarct size) determined by tetrazolium staining and expressed in percentage of risk area, was significantly lower in both treated groups, moreover, the effect of P was more pronounced (27±2 % and 10±2 % in S and P groups, respectively, vs. 42±1 % in C; P<0.05). In contrast, only S, but not P, was able to improve postischemic recovery of left ventricular developed pressure (LVDP; 48±12 % of preischemic values vs. 25±4 % in C and 21± 7 % in P groups; P<0.05). Our results suggest that differences in water solubility of statins indicating a different ability to cross cardiac membranes may underlie their distinct cardioprot ective effects on myocardial stunning and lethal injury induced by ischemia/reperfusion., S. Čarnická ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Risk factors (RF) of cardiovascular diseases associated with modern lifestyle, such as stress, chronically increased blood pressure, hyperglycemia and dyslipidemia have a negative impact on the heart exposed to ischemia: their may facilitate its lethal injury (myocardial infarction) and occurrence of sudden death due to ventricular arrhythmias. On the other hand, some stressful stimuli related to RF including reactive oxygen species, transient episodes of ischemia (hypoxia), high glucose and other may play a dual role in the pathogenesis of ischemia/reperfusion (I/R) injury (IRI). Besides their deleterious effects, these factors may trigger adaptive processes in the heart resulting in greater resistance against IRI, which is also a characteristic feature of the female myocardium. However, sensitivity to ischemia is increasing with age in both genders. Current research indicates that comorbidity related to lifestyle may impair the cardiac response to acute ischemia not only by interference with pathophysiological mechanisms of IRI per se, but via suppression of intrinsic protective mechanisms in the heart and its ability to tolerate the ischemic challenges, although the role of RF has not been unequivocally proven. Moreover, even pathologically altered myocardium need not completely lose its adaptive potential. In addition, increased ischemic tolerance can be induced by the pleiotropic (independent of the primary) effects of some hypolipidemic and antidiabetic drugs, even in the diseased myocardium. This review addresses the issue of the impact of RF on cellular cardioprotective mechanisms and the possibilities to restore adaptive potential in subjects challenged with several RF. Reactivation of adaptive processes in the myocardium taking into consideration gender and age can contribute to optimalization of antiischemic therapy., T. Ravingerová, ... [et al.]., and Obsahuje seznam literatury