We investigated the effects of in vivo treatment with the angiotensin-converting enzyme inhibitor (ACE-I) captopril and/or of in vitro administration of L-arginine on the metabolism and ischemia-reperfusion injury of the isolated perfused rat myocardium. Captopril (50 mg/l in drinking water, 4 weeks) raised the myocardial content of glycogen. After 25-min global ischemia, captopril treatment, compared with the controls, resulted in lower rates of lactate dehydrogenase release during reperfusion (8.58±1.12 vs. 13.39±1.88 U/heart/30 min, p<0.05), lower myocardial lactate contents (11.34±0.93 vs. 21.22±4.28 µmol/g d.w., p<0.05) and higher coronary flow recovery (by 25 %), and prevented the decrease of NO release into the perfusate during reperfusion. In control hearts L-arginine added to the perfusate (1 mmol/l) 10 min before ischemia had no effect on the parameters evaluated under our experimental conditions, presumably because of sufficient saturation of the myocardium with L-arginine. In the hearts of captopril-treated rats, L-arginine further increased NO production during reperfusion and the cGMP content before ischemia. Our results have shown that long-term captopril treatment increases the energy potential and has a beneficial effect on tolerance of the isolated heart to ischemia. L-arginine added into the perfusate potentiates the effect of captopril on the NO signaling pathway., J. Divišová, H. Vavřínková, M. Tutterová, L. Kazdová, E. Meschišvili., and Obsahuje bibliografii
We studied the effects of long-term administration of molsidomine and pentaerythrityl tetranitrate (PETN) on the cardiovascular system of spontaneously hypertensive rats (SHR). One control and three experimental groups of 10-week-old animals were used: 1) control Wistar rats, 2) SHR, 3) SHR treated with molsidomine in tap water (100 mg/kg/day, by gavage), and 4) SHR treated with PETN in tap water (200 mg/kg/day, by gavage). After six weeks, the content of cGMP in platelets and NO synthase (NOS) activity in aortas were evaluated in the experimental groups. For morphological evaluation the rats were perfused at 120 mm Hg with a glutaraldehyde fixative and the arteries were processed for electron microscopy. Blood pressure and heart weight/body weight ratio (HW/BW) were increased in all experimental groups with respect to the controls. HW/BW was lower in the molsidomine group in comparison to both SHR and PETN-treated group. The platelet content of cGMP was increased and the activity of NOS in the aortas was decreased in the molsidomine and PETN-treated groups. Wall thickness and cross-sectional area of thoracic aorta, carotid artery and coronary artery were increased similarly in all experimental groups compared to the controls, but there were no differences among the experimental groups. We summarize that long-term administration of exogenous NO donors did not improve pathological changes of the cardiovascular system in SHR., F. Kristek, V. Fáberová, I. Varga., and Obsahuje bibliografii
C-type natriuretic peptides (CNP) play an inhibitory role in smooth muscle motility of the gastrointestinal tract, but the effect of CNP on delayed rectifier potassium currents is still unclear. This study was designed to investigate the effect of CNP on delayed rectifier potassium currents and its mechanism by using conventional whole-cell patch- clamp technique in guinea-pig gastric myocytes isolated by collagenase. CNP significantly inhibited delayed rectifier potassium currents [IK (V)] in dose-dependent manner, and CNP inhibited the peak current elicited by depolarized step pulse to 86.1±1.6 % (n=7, P<0.05), 78.4±2.6 % (n=10, P< 0.01) and 67.7±2.3 % (n=14, P<0.01), at concentrations of 0.01 μmol/l, 0.1 μmol/l and 1 μmol/l, respectively, at +60 mV. When the cells were preincubated with 0.1 μmol/l LY83583, a guanylate cyclase inhibitor, the 1 μmol/l CNP-induced inhibition of IK (V) was significantly impaired but when the cells were preincubated with 0.1 μmol/l zaprinast, a cGMP-sensitive phosphodiesterase inhibitor, the 0.01 μmol/l CNP-induced inhibition of IK (V) was significantly potentiated. 8-Br-cGMP, a membrane permeable cGMP analogue mimicked inhibitory effect of CNP on IK (V). CNP-induced inhibition of IK (V) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). The results suggest that CNP inhibites the delayed rectifier potassium currents via cGMP-PKG signal pathway in the gastric antral circular myocytes of the guinea-pig., H. Y. Xu, X. Huang, M. Yang, J.-B. Sun, L.-H. Piao, Y. Zhang, L. Gao, W.-X. Xu., and Obsahuje bibliografii a bibliografické odkazy