Ischemia can contribute to the inner ear pathology and hearing loss. To determine the susceptibility of inner and outer hair cells (IHCs/OHCs) to ischemic and post-ischemic period, we used organotypic cultures of the organ of Corti isolated from P3 rats as an in vitro model of inner ear ischemia (oxygen-glucose deprivation, OGD). We identified the hair cells (HCs) by phalloidin staining. The cells with damaged cellular membrane integrity were identified by propidium iodide (PI)-exclusion assay. The cells with fragmented chromosomal DNA were detected by TUNEL assay. Organotypic cultures were subjected to a mild (3 h duration) or severe (4 h duration ) OGD, followed by a recovery period of 21 h and 20 h, respectively. Mild OGD induced a loss of 10-20 % HCs, whereas severe OGD induced loss of 35 % HCs. We confirmed that OHCs are less vulnerable to OGD than IHCs. Of all missing OHCs, 80-90 % was lost during the OGD period and 10-20 % during the recovery period. In contrast, the loss of IHCs was equal during both experimental periods. The OGD period was mainly associated with PI-positive nuclei. TUNEL-positive nuclei were a minor frac tion during the OGD period and increased during the recovery period, indicating the progression of DNA fragmentation. Our results implicate a differential susceptibility of IHCs and OHCs during and after ischemia-like insult, which may be of therapeutic consequence., N. Amarjargal ... [et al.]., and Obsahuje seznam literatury
Sensorineural hearing loss and vertigo, resulting from lesions in the sensory epithelium of the inner ear, have a high incidence worldwide. The sensory epithelium of the inner ear may exhibit extreme degeneration and is transformed to flat epithelium (FE) in humans and mice with profound sensorineural hearing loss and/or vertigo. Various factors, including ototoxic drugs, noise exposure, aging, and genetic defects, can induce FE. Both hair cells and supporting cells are severely damaged in FE, and the normal cytoarchitecture of the sensory epithelium is replaced by a monolayer of very thin, flat cells of irregular contour. The pathophysiologic mechanism of FE is unclear but involves robust cell division. The cellular origin of flat cells in FE is heterogeneous; they may be transformed from supporting cells that have lost some features of supporting cells (dedifferentiation) or may have migrated from the flanking region. The epithelial-mesenchymal transition may play an important role in this process. The treatment of FE is challenging given the severe degeneration and loss of both hair cells and supporting cells. Cochlear implant or vestibular prosthesis implantation, gene therapy, and stem cell therapy show promise for the treatment of FE, although many challenges remain to be overcome., Lu He, Jing-Ying Guo, Ke Liu, Guo-Peng Wang, Shu-Sheng Gong., and Obsahuje bibliografii