Postconditioning (PostC) is a re cently discovered phenomenon whereby brief repetitive cycles of ischaemia with intermittent reperfusion following prolonged is chaemia elicit cardioprotection. This study investigated whether the age, genetic characteristics or number of repetitive cycles influenced the protective effect of PostC in mice. C57BL/6 floxed or non-floxed STAT-3 mice aged between 14-16 weeks (young) or 18-20 weeks (older) were perfused on a Langendorff apparatus and subjected to 35 min global ischaemia and 45 min reperfusion. PostC was elicited by either 3 (PostC-3) or 6 cycles (PostC-6) of 10s ischaemia and 10 s reperfusion. PostC-3 and PostC-6 in both young and older non-floxed mice reduced the myocar dial infarct size. In contrast, only PostC-3 reduced myocardial infarct size in young floxed mice. Neither PostC-3 nor PostC-6 reduced the in farct in older floxed mice. Our data reveal that genetic characteristics, a minute difference in age or the nu mber of postconditioning cycles are critical factors to be consid ered for the successful effect of ischaemic postconditioning in a murine model. Moreover, these factors should be taken into consideration for future experimental research or clinical applications of this protective phenomenon., S. J. Somers ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The goal of the study was to determine whether postconditioning protects against different ischemia durations in the rabbit. Rabbits were assigned to a 20-, 25-, 45- or 60-min coronary occlusion followed by 24-h of reperfusion. Rabbits received no further intervention (control) or were postconditioned with four cycles of 30-s occlusion and 30-s reperfusion after myocardial infarction. Plasma levels of troponin I were quantified throughout reperfusion. In control conditions, infarct sizes (% area at risk using triphenyltetrazolium chloride) after 20, 25, 45 and 60 min of coronary occlusions were 23±3, 51±4, 70±3 and 81±3 %, respectively. With 20 and 25 min occlusion, postconditioning reduced infarct size by 43±10 and 73±21 %, respectively. On the other hand, with 45 or 60 min occlusion, postconditioning had no significant effects on infarct size (61±3 and 80±2 % of area at risk). Preconditioning protocol was performed with 25- and 60-min coronary occlusion. As expected, preconditioning significantly reduced infarct size. In conclusion, in the rabbit, the cardioprotection afforded by postconditioning is limited to less than 45 min coronary occlusion., R. Létienne, Y. Calmettes, B. Le Grand., and Obsahuje seznam literatury
Ischemic postconditioning and remote conditioning are potentially useful tools for protecting ischemic myocardium. This study tested the hypothesis that 2,3-dehydrosilybin (DHS), a flavonolignan component of Silybum marianum , could attenuate cardiomyocyte damage following hypoxia/ reoxygenation by decreasing the generation of reactive oxygen species (ROS). After 5-6 days of cell culture in normoxic conditions the rat neonatal cardiomyocytes were divided into four groups. Control group (9 h at normoxic conditions), hypoxia/ reoxygenation group (3 h at 1 % O2 , 94 % N2 and 5 % CO2 followed by 10 min of 10 μmol·l -1 DHS and 6 h of reoxygenation in normoxia) and postconditioning group (3 h of hypoxia, three cycles of 5 min reoxygenation and 5 min hypoxia followed by 6 h of normoxia). Cell viability assess ed by propidium iodide staining was decreased after DHS treatment consistent with increased levels of lactatedehydrogenase (LDH) after reoxygenation. LDH leakage was significantly reduced when cardiomyocytes in the H/Re group were exposed to DHS. DHS treatment reduced H2O2 production and also decreased the generation of ROS in the H/Re group as evidenced by a fluorescence indicator. DHS treatment reduces reoxygenation-induced injury in cardiomyocytes by attenuation of ROS generation, H2O2 and protein carbonyls levels. In addition, we found that both the postconditioning protocol and the DHS treatment are associated with restored ratio of phosphorylated/total protein kinase C epsilon, relative to the H/Re group. In conclusion, our data support the protective role of DH S in hypoxia/reperfusion injury and indicate that DHS may act as a postconditioning mimic., E. Gabrielová, V. Křen, M. Jabůrek, M. Modrianský., and Obsahuje bibliografii